Orna Grumberg
Michael Huth (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

13th International Conference, TACAS 2007
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March/April 2007, Proceedings

LNCS 4424

@Qean Joing G
E® <
b
Theory
And

Practice of
Software

2007

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4424

Orna Grumberg Michael Huth (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems

13th International Conference, TACAS 2007
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2007
Braga, Portugal, March 24 - April 1, 2007
Proceedings

@ Springer

Volume Editors

Orna Grumberg

Technion

Israel Institute of Technology
Haifa 32000, Israel

E-mail: orna@cs.technion.ac.il

Michael Huth

Imperial College London

United Kingdom

E-mail: M.Huth@doc.imperial.ac.uk

Library of Congress Control Number: 2007922076

CR Subject Classification (1998): F.3,D.2.4,D.2.2,C.2.4,F2.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-71208-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71208-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12029204 06/3142 543210

Foreword

ETAPS 2007 is the tenth instance of the European Joint Conferences on Theory
and Practice of Software, and thus a cause for celebration.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

History and Prehistory of ETAPS

ETAPS as we know it is an annual federated conference that was established
in 1998 by combining five conferences [Compiler Construction (CC), European
Symposium on Programming (ESOP), Fundamental Approaches to Software En-
gineering (FASE), Foundations of Software Science and Computation Structures
(FOSSACS), Tools and Algorithms for Construction and Analysis of Systems
(TACAS)] with satellite events.

All five conferences had previously existed in some form and in various colo-
cated combinations: accordingly, the prehistory of ETAPS is complex. FOSSACS
was earlier known as the Colloquium on Trees in Algebra and Programming
(CAAP), being renamed for inclusion in ETAPS as its historical name no longer
reflected its contents. Indeed CAAP’s history goes back a long way; prior to
1981, it was known as the Colleque de Lille sur les Arbres en Algebre et en
Programmation. FASE was the indirect successor of a 1985 event known as Col-
loquium on Software Engineering (CSE), which together with CAAP formed a
joint event called TAPSOFT in odd-numbered years. Instances of TAPSOFT, all
including CAAP plus at least one software engineering event, took place every
two years from 1985 to 1997 inclusive. In the alternate years, CAAP took place
separately from TAPSOFT.

Meanwhile, ESOP and CC were each taking place every two years from 1986.
From 1988, CAAP was colocated with ESOP in even years. In 1994, CC became
a “conference” rather than a “workshop” and CAAP, CC and ESOP were there-
after all colocated in even years.

TACAS, the youngest of the ETAPS conferences, was founded as an inter-
national workshop in 1995; in its first year, it was colocated with TAPSOFT. It
took place each year, and became a “conference” when it formed part of ETAPS
1998. It is a telling indication of the importance of tools in the modern field of
informatics that TACAS today is the largest of the ETAPS conferences.

VI Foreword

The coming together of these five conferences was due to the vision of a small
group of people who saw the potential of a combined event to be more than the
sum of its parts. Under the leadership of Don Sannella, who became the first
ETAPS steering committee chair, they included: Andre Arnold, Egidio Aste-
siano, Hartmut Ehrig, Peter Fritzson, Marie-Claude Gaudel, Tibor Gyimothy,
Paul Klint, Kim Guldstrand Larsen, Peter Mosses, Alan Mycroft, Hanne Riis
Nielson, Maurice Nivat, Fernando Orejas, Bernhard Steffen, Wolfgang Thomas
and (alphabetically last but in fact one of the ringleaders) Reinhard Wilhelm.

ETAPS today is a loose confederation in which each event retains its own
identity, with a separate programme committee and proceedings. Its format is
open-ended, allowing it to grow and evolve as time goes by. Contributed talks
and system demonstrations are in synchronized parallel sessions, with invited
lectures in plenary sessions. Two of the invited lectures are reserved for “uni-
fying” talks on topics of interest to the whole range of ETAPS attendees. The
aim of cramming all this activity into a single one-week meeting is to create a
strong magnet for academic and industrial researchers working on topics within
its scope, giving them the opportunity to learn about research in related areas,
and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 1998-2006

The first ETAPS took place in Lisbon in 1998. Subsequently it visited Ams-
terdam, Berlin, Genova, Grenoble, Warsaw, Barcelona, Edinburgh and Vienna
before arriving in Braga this year. During that time it has become established
as the major conference in its field, attracting participants and authors from
all over the world. The number of submissions has more than doubled, and the
numbers of satellite events and attendees have also increased dramatically.

ETAPS 2007

ETAPS 2007 comprises five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
18 satellite workshops (ACCAT, AVIS, Bytecode, COCV, FESCA, FinCo, GT-
VMT, HAV, HFL, LDTA, MBT, MOMPES, OpenCert, QAPL, SC, SLA++P,
TERMGRAPH and WITS), three tutorials, and seven invited lectures (not in-
cluding those that were specific to the satellite events). We received around 630
submissions to the five conferences this year, giving an overall acceptance rate of
25%. To accommodate the unprecedented quantity and quality of submissions,
we have four-way parallelism between the main conferences on Wednesday for
the first time. Congratulations to all the authors who made it to the final pro-
gramme! I hope that most of the other authors still found a way of participating
in this exciting event and I hope you will continue submitting.

ETAPS 2007 was organized by the Departamento de Informatica of the Uni-
versidade do Minho, in cooperation with

Foreword VII

European Association for Theoretical Computer Science (EATCS)

— European Association for Programming Languages and Systems (EAPLS)

— European Association of Software Science and Technology (EASST)

— The Computer Science and Technology Center (CCTC, Universidade do
Minho)

— Camara Municipal de Braga

— CeSIUM/GEMCC (Student Groups)

The organizing team comprised:

— Jodo Saraiva (Chair)

— José Bacelar Almeida (Web site)

— José Joao Almeida (Publicity)

— Luis Soares Barbosa (Satellite Events, Finances)
— Victor Francisco Fonte (Web site)

— Pedro Henriques (Local Arrangements)

— José Nuno Oliveira (Industrial Liaison)

— Jorge Sousa Pinto (Publicity)

— Anténio Nestor Ribeiro (Fundraising)

— Joost Visser (Satellite Events)

ETAPS 2007 received generous sponsorship from Fundagao para a Ciéncia e a
Tecnologia (FCT), Enabler (a Wipro Company), Cisco and TAP Air Portugal.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Roberto Amadio (Paris), Luciano Baresi
(Milan), Sophia Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Chris Hankin (London), Laurie Hendren
(McGill), Mike Hinchey (NASA Goddard), Michael Huth (London), Anna Ing6lfs-
déttir (Aalborg), Paola Inverardi (IL’Aquila), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi (Brown),
Kim Larsen (Aalborg), Tiziana Margaria (Gottingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Jakob Rehof (Dortmund), Don Sannella (Edin-
burgh), Joao Saraiva (Minho), Vladimiro Sassone (Southampton), Helmut Seidl
(Munich), Daniel Varro (Budapest), Andreas Zeller (Saarbriicken).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the programme committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizing chair of ETAPS 2007, Joao Saraiva,
for arranging for us to have ETAPS in the ancient city of Braga.

Edinburgh, January 2007 Perdita Stevens
ETAPS Steering Committee Chair

Preface

This volume contains the proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007) which took place in Braga, Portugal, March 26-30, 2007.

TACAS is a forum for researchers, developers and users interested in rigor-
ously based tools and algorithms for the construction and analysis of systems.
The conference serves to bridge the gaps between different communities that
share common interests in, and techniques for, tool development and its al-
gorithmic foundations. The research areas covered by such communities include
but are not limited to formal methods, software and hardware verification, static
analysis, programming languages, software engineering, real-time systems, com-
munications protocols and biological systems. The TACAS forum provides a
venue for such communities at which common problems, heuristics, algorithms,
data structures and methodologies can be discussed and explored. In doing so,
TACAS aims to support researchers in their quest to improve the utility, re-
liability, flexibility and efficiency of tools and algorithms for building systems.
The specific topics covered by the conference included, but were not limited
to, the following: specification and verification techniques for finite and infinite-
state systems; software and hardware verification; theorem-proving and model-
checking; system construction and transformation techniques; static and run-
time analysis; abstraction techniques for modeling and validation; compositional
and refinement-based methodologies; testing and test-case generation; analyti-
cal techniques for secure, real-time, hybrid, critical, biological or dependable
systems; integration of formal methods and static analysis in high-level hard-
ware design or software environments; tool environments and tool architectures;
SAT solvers; and applications and case studies.

TACAS traditionally considers two types of papers: research papers that de-
scribe in detail novel research within the scope of the TACAS conference; and
short tool demonstration papers that give an overview of a particular tool and
its applications or evaluation. TACAS 2007 received 170 research and 34 tool
demonstration submissions (204 submissions in total), and accepted 45 research
papers and 9 tool demonstration papers. Each submission was evaluated by at
least three reviewers. Submissions co-authored by a Program Committee mem-
ber were neither reviewed, discussed nor decided on by any Program Committee
member who co-authored a submission. After a 35-day reviewing process, the
program selection was carried out in a two-week electronic Program Commit-
tee meeting. We believe that this meeting and its detailed discussions resulted
in a strong technical program. The TACAS 2007 Program Committee selected
K. Rustan M. Leino (Microsoft Research, USA) as invited speaker, who kindly
agreed and gave a talk entitled “Verifying Object-Oriented Software: Lessons
and Challenges,” reporting on program verification of modern software from the

X Preface

perspective of the Spec# programming system. These proceedings also include
the title and abstract of an ETAPS “unifying” talk entitled “There and Back
Again: Lessons Learned on the Way to the Market,” in which Rance Cleaveland
reports about his experience of commercializing formal modeling and verifica-
tion technology, and how this has changed his view of mathematically oriented
software research.

As TACAS 2007 Program Committee Co-chairs we thank the authors and co-
authors of all submitted papers, all Program Committee members, subreviewers,
and especially our Tool Chair Byron Cook and the TACAS Steering Commit-
tee for guaranteeing such a strong technical program. Martin Karusseit gave us
prompt support in dealing with the online conference management service. The
help of Anna Kramer at the Springer Editorial Office with the general organi-
zation and the production of the proceedings was much appreciated. TACAS
2007 was part of the 10th European Joint Conference on Theory and Practice
of Software (ETAPS), whose aims, organization and history are detailed in the
separate foreword by the ETAPS Steering Committee Chair. We would like to
express our gratitude to the ETAPS Steering Committee, particularly its Chair
Perdita Stevens, and the Organizing Committee — notably Joao Saraiva — for
their efforts in making ETAPS 2007 a successful event.

Last, but not least, we acknowledge Microsoft Research Cambridge for kindly
agreeing to sponsor seven awards (2000 GBP split into seven parts) for students
who co-authored and presented their award-winning paper at TACAS 2007. The
quality of these papers, as judged in their discussion period, was the salient
selection criterion for these awards.

January 2007 Orna Grumberg and Michael Huth

Organization

TACAS Steering Committee

Ed Brinksma ESI and University of Twente (The Netherlands)
Rance Cleaveland ~ University of Maryland and Fraunhofer USA Inc(USA)
Kim Larsen Aalborg University (Denmark)

Bernhard Steffen University of Dortmund (Germany)

Lenore Zuck University of Illinois (USA)

TACAS 2007 Program Committee

Christel Baier
Armin Biere
Jonathan Billington
Ed Brinksma
Rance Cleaveland

Byron Cook
Dennis Dams
Marsha Chechik
Francois Fages
Kathi Fisler
Limor Fix

Hubert Garavel
Susanne Graf
Orna Grumberg
John Hatcliff
Holger Hermanns
Michael Huth
Daniel Jackson
Somesh Jha

Orna Kupferman
Marta Kwiatkowska
Kim Larsen
Michael Leuschel
Andreas Podelski
Tiziana Margaria-Steffen
Tom Melham

CR Ramakrishnan
Jakob Rehof

Natarajan Shankar
Lenore Zuck

TU. Dresden, Germany

Johannes Kepler University, Linz, Austria

University of South Australia, Australia

ESI and University of Twente, The Netherlands

University of Maryland and Fraunhofer USA Inc,
USA

Microsoft Research, Cambridge, UK

Bell Labs, Lucent Technologies, Murray Hill, USA

University of Toronto, Canada

INRIA Rocquencourt, France

Worcester Polytechnic, USA

Intel Research Laboratory, Pittsburgh, USA

INRIA Rhone-Alpes, France

VERIMAG, Grenoble, France

TECHNION, Israel Institute of Technology, Israel

Kansas State University, USA

University of Saarland, Germany

Imperial College London, UK

Massachusetts Institute of Technology, USA

University of Wisconsin at Madison, USA

Hebrew University, Jerusalem, Israel

University of Birmingham, UK

Aalborg University, Denmark

University of Diisseldorf, Germany

University of Freiburg, Germany

University of Potsdam, Germany

Oxford University, UK

SUNY Stony Brook, USA

University of Dortmund and Fraunhofer ISST,
Germany

SRI, Menlo Park, USA

University of Illinois, USA

XII Organization

Additional Reviewers

Parosh Abdulla
Domagoj Babic
Bernd Beckert
Josh Berdine
Christian Bessiere
Juliana Bowles

Manuela L. Bujorianu

Aziem Chawdhary
Christopher Conway
Leonardo de Moura
Giorgio Delzano
Dino Distefano
Niklas Een

Sandro Etalle
Harald Fecher
Marc Fontaine
Goran Frehse
Yuan Gan

Mihaela Gheorghiu
Michael Greenberg
Dimitar Guelev
Peter Habermehl
Tom Hart

Marc Herbstritt
Hardi Hungar
Florent Jacquemard
Thierry Jéron

Toni Jussila
Joachim Klein
Steve Kremer
Kelvin Ku

Viktor Kuncak
Shuvendu Lahiri
Frédéric Lang

Axel Legay
Nimrod Lilith
Angelika Mader
Oded Maler

Joao Marques-Silva
Frédéric Mesnard
Laurent Mounier
Ralf Nagel

Dejan Nickovic

Erika Abraham
Marco Bakera
Gerd Behrmann
Marco Bernardo
Per Bjesse

Marius Bozga
Thomas Chatain
Alessandro Cimatti
Patrick Cousot
Alexandre David
Henning Dierks
Daniel Dougherty
Jochen Eisinger
Kousha Etessami
Bernd Finkbeiner
Martin Fréinzle
Joern Freiheit

Dan Geiger
Georges Gonthier
Marcus Groesser
Sumit Gulwani
Rémy Haemmerlé
Monika Heiner
Tamir Heyman
Radu Iosif
Himanshu Jain
Barbara Jobstmann
Joost-Pieter Katoen
Piotr Kordy

Sriram Krishnamachari

Hillel Kugler
Marcos E. Kurban
Charles Lakos
Rom Langerak
Jerome LeRoux
Lin Liu
Stephen Magill
Shahar Maoz
Thierry Massart
Roland Meyer
Anca Muscholl
Kedar Namjoshi
Brian Nielsen

Cyrille Artho

Ittai Balaban

Jens Bendisposto
Tanya Berger-Wolf
Dragan Bosnacki
Laura Brandan Briones
Krishnendu Chatterjee
Koen Lindstréom Claessen
Frank de Boer
Conrado Daws
Zinovy Diskin

Bruno Dutertre
Cindy Eisner

Azaleh Farzan
Maarten Fokkinga
Lars Frantzen

Guy Gallasch
Naghmeh Ghafari
Alexey Gotsman
Roland Groz

Arie Gurfinkel

Matt Harren
Noomene Ben Henda
Josef Hooman
Franjo Ivancic

David N. Jansen
Narendra Jussien
Victor Khomenko
Eric Koskinen
Daniel Kroening
Wouter Kuijper
Marcel Kyas
Anna-Lena Lamprecht
Richard Lassaigne
Tal Lev-Ami

Yoad Lustig

Thomas Mailund
Jelena Marincic
Radu Mateescu
Marius Mikucionis
Alan Mycroft

Shiva Nejati

Gethin Norman

Ulrik Nyman
Ernst-Riidiger Olderog
Matthew Parkinson
Lee Pike

Erik Poll

Shaz Qadeer
Zvonimir Rakamaric
Arend Rensink
Oliver Roux

Andrey Rybalchenko
Gwen Salaiin
Wolfgang Schubert
Koushik Sen

Sharon Shoham
Jocelyn Simmonds

Ana Sokolova

Maria Sorea
Bernhard Steffen
Greogoire Sutre
Hayo Thielecke
Christian Topnik
Rachel Tzoref
Somsak Vanit-Anunchai
Jacques Verriet
Horst Voigt

Uwe Waldmann
Martin Wehrle
Georg Weissenbacher
Thomas Wies
Verena Wolf

Avi Yadgar

Karen Yorav
Aleksandr Zaks

Tulian Ober

Rotem Oshman

Corina Pasareanu

Nir Piterman

Olivier Ponsini

Sophie Quinton

Jacob Illum Rasmussen
Pierre-Alain Reynier
Oliver Ruething

Tarek Sadani

German Puebla Sanchez
Stefan Schwoon
Wendelin Serwe
Marcus Siegle

Carsten Sinz

Sylvain Soliman
Scott Smolka
Marielle Stoelinga
Don Syme

Ashish Tiwari
Tayssir Touili
Sebastian Uchitel
Moshe Vardi
Marie Vidal
Tomas Vojnar

Xu Wang

Ou Wei

Bernd Westphal
Daniel Willems
Olaf Wolkenhauer
Alex Yakovlev
Greta Yorsh
Lijun Zhang

Organization

Peter O’Hearn
David Parker
Larry Paulson
Daniel Plagge
Riccardo Pucella
Harald Raffelt
Clemens Renner
Jan-Willem Roorda
Theo C. Ruys
Hassen Saidi
Lutz Schroeder
Helmut Seidl
Saad Sheikh
Joao Margues Silva
Viorica
Sofronie-Stokkermans
Kim Solin
Biblav Srivastava
Zhendong Su
Mana Taghdiri
Christophe Tollu
Jan Tretmans
Viktor Vafeiadis
Helmut Veith
Willem Visser
Bjorn Wachter
Heike Wehrheim
Christioph Weidenbach
Jon Whittle
Christian Winkler
Tao Xie
Hongseok Yang
Cong Yuan

XIII

Table of Contents

Invited Contributions

THERE AND BACK AGAIN: Lessons Learned on the Way to the
Market . ..o e
Rance Cleaveland

Verifying Object-Oriented Software: Lessons and Challenges
K. Rustan M. Leino

Software Verification

Shape Analysis by Graph Decomposition.
R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv

A Reachability Predicate for Analyzing Low-Level Software
Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and
Zvonimir Rakamari¢

Generating Representation Invariants of Structurally Complex Data
Muhammad Zubair Malik, Aman Pervaiz, and Sarfraz Khurshid

Probabilistic Model Checking and Markov Chains

Multi-objective Model Checking of Markov Decision Processes
K. Etessami, M. Kwiatkowska, M.Y. Vardi, and M. Yannakakis

PReMo: An Analyzer for Probabilistic Recursive Models
Dominik Wojtczak and Kousha Etessami

Counterexamples in Probabilistic Model Checking....................
Tingting Han and Joost-Pieter Katoen

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model
Checking o
Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and
David N. Jansen

Static Analysis

Causal Dataflow Analysis for Concurrent Programs
Azadeh Farzan and P. Madhusudan

XVI Table of Contents

Type-Dependence Analysis and Program Transformation for Symbolic
Execution 117
Saswat Anand, Alessandro Orso, and Mary Jean Harrold

JPF-SE: A Symbolic Execution Extension to Java PathFinder......... 134
Saswat Anand, Corina S. Pasareanu, and Willem Visser

Markov Chains and Real-Time Systems

A Symbolic Algorithm for Optimal Markov Chain Lumping 139
Salem Derisavi

Flow Faster: Efficient Decision Algorithms for Probabilistic

SIMulations 155
Ligun Zhang, Holger Hermanns, Friedrich FEisenbrand, and
Dawvid N. Jansen

Model Checking Probabilistic Timed Automata with One or
Two Clocks . ..o 170
Marcin Jurdziriski, Francois Laroussinie, and Jeremy Sproston

Adaptor Synthesis for Real-Time Components 185
Massimo Tivoli, Pascal Fradet, Alain Girault, and Gregor Goessler

Timed Automata and Duration Calculus

Deciding an Interval Logic with Accumulated Durations 201
Martin Frdanzle and Michael R. Hansen

From Time Petri Nets to Timed Automata: An Untimed Approach. 216
Davide D’Aprile, Susanna Donatelli, Arnaud Sangnier, and
Jeremy Sproston

Complexity in Simplicity: Flexible Agent-Based State Space
Exploration 231

Jacob I. Rasmussen, Gerd Behrmann, and Kim G. Larsen

On Sampling Abstraction of Continuous Time Logic with Durations . . . 246
Paritosh K. Pandya, Shankara Narayanan Krishna, and Kuntal Loya

Assume-Guarantee Reasoning

Assume-Guarantee Synthesis i i 261
Krishnendu Chatterjee and Thomas A. Henzinger

Table of Contents

Optimized L*-Based Assume-Guarantee Reasoning
Sagar Chaki and Ofer Strichman

Refining Interface Alphabets for Compositional Verification
Mihaela Gheorghiu, Dimitra Giannakopoulou, and
Corina S. Pasareanu

MAVEN: Modular Aspect Verification
Mazx Goldman and Shmuel Katz

Biological Systems

Model Checking Liveness Properties of Genetic Regulatory Networks . . .
Grégory Batt, Calin Belta, and Ron Weiss

Checking Pedigree Consistency with PCS
Panagiotis Manolios, Marc Galceran Oms, and Sergi Oliva Valls

“Don’t Care” Modeling: A Logical Framework for Developing Predictive
System Models
Hillel Kugler, Amir Pnueli, Michael J. Stern, and
E. Jane Albert Hubbard

Abstraction Refinement

Deciding Bit-Vector Arithmetic with Abstraction
Randal E. Bryant, Daniel Kroening, Joél Ouaknine, Sanjit A. Seshia,
Ofer Strichman, and Bryan Brady

Abstraction Refinement of Linear Programs with Arrays
Alessandro Armando, Massimo Benerecetti, and Jacopo Mantovani

Property-Driven Partitioning for Abstraction Refinement
Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Combining Abstraction Refinement and SAT-Based Model Checking . ..
Nina Amla and Kenneth L. McMillan

Message Sequence Charts

Detecting Races in Ensembles of Message Sequence Charts
Edith Elkind, Blaise Genest, and Doron Peled

Replaying Play In and Play Out: Synthesis of Design Models from
Scenarios by Learning
Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, and
Martin Leucker

XVII

XVIII Table of Contents

Automata-Based Model Checking

Improved Algorithms for the Automata-Based Approach to
Model-Checkingo i

Laurent Doyen and Jean-Frangois Raskin

GOAL: A Graphical Tool for Manipulating Biichi Automata and
Temporal Formulae i
Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai,
Kang-Nien Wu, and Wen-Chin Chan

Faster Algorithms for Finitary Games
Florian Horn

Specification Languages
Planned and Traversable Play-Out: A Flexible Method for Executing
Scenario-Based Programs

David Harel and Itai Segall

MOTOR: The MODEST Tool Environment
Henrik Bohnenkamp, Holger Hermanns, and Joost-Pieter Katoen

Syntactic Optimizations for PSL Verification
Alessandro Cimatti, Marco Roveri, and Stefano Tonetta

The Heterogeneous Tool Set, HETS,
Till Mossakowski, Christian Maeder, and Klaus Liittich

Security

Searching for Shapes in Cryptographic Protocols
Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer

Automatic Analysis of the Security of XOR-Based Key Management

Schemes
Véronique Cortier, Gavin Keighren, and Graham Steel

Software and Hardware Verification

State of the Union: Type Inference Via Craig Interpolation............
Rangit Jhala, Rupak Majumdar, and Ru-Gang Xu

Hoare Logic for Realistically Modelled Machine Code
Magnus O. Myreen and Michael J.C. Gordon

Table of Contents XIX

VCEGAR: Verilog CounterExample Guided Abstraction Refinement... 583
Himanshu Jain, Daniel Kroening, Natasha Sharygina, and

Edmund Clarke

Decision Procedures and Theorem Provers

Alloy Analyzer+PVS in the Analysis and Verification of Alloy
Specifications 587
Marcelo F. Frias, Carlos G. Lopez Pombo, and Mariano M. Moscato

Combined Satisfiability Modulo Parametric Theories 602
Sava Krstié, Amit Goel, Jim Grundy, and Cesare Tinelli

A Groébner Basis Approach to CNF-Formulae Preprocessing 618
Christopher Condrat and Priyank Kalla

Kodkod: A Relational Model Finder 632

Emina Torlak and Daniel Jackson

Model Checking

Bounded Reachability Checking of Asynchronous Systems Using
Decision Diagrams 648
Andy Jinging Yu, Gianfranco Ciardo, and Gerald Liittgen

Model Checking on Trees with Path Equivalences 664
Rageev Alur, Pavol Cerng, and Swarat Chaudhuri

UpPAAL/DMC — Abstraction-Based Heuristics for Directed Model

Checking 679
Sebastian Kupferschmid, Klaus Drdger, Jorg Hoffmann,
Bernd Finkbeiner, Henning Dierks, Andreas Podelski, and
Gerd Behrmann

Distributed Analysis with pCRL: A Compendium of Case Studies. 683
Stefan Blom, Jens R. Calamé, Bert Lisser, Simona Orzan,
Jun Pang, Jaco van de Pol, Mohammad Torabi Dashti, and
Anton J. Wijs

Infinite-State Systems

A Generic Framework for Reasoning About Dynamic Networks of
Infinite-State Processes 690
Ahmed Bouagjani, Yan Jurski, and Mihaela Sighireanu

XX Table of Contents

Unfolding Concurrent Well-Structured Transition Systems 706
Frédéric Herbreteau, Grégoire Sutre, and The Quang Tran

Regular Model Checking Without Transducers (On Efficient Verification

of Parameterized Systems) i 721
Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and
Ahmed Rezine

Author Index 737

THERE AND BACK AGAIN:
Lessons Learned on the Way to the Market

Rance Cleaveland

Department of Computer Science, University of Maryland &
Fraunhofer USA Center for Experimental Software Engineering &
Reactive Systems Inc.
rance@cs.umd.edu

Abstract. In 1999 three formal-methods researchers, including the speaker, fou-
nded a company to commercialize formal modeling and verification technology
for envisioned telecommunications customers. Eight years later, the company
sells testing tools to embedded control software developers in the automotive,
aerospace and related industries. This talk will describe the journey taken by the
company during its evolution, why this journey was both less and more far than
it seems, and how the speaker’s views on the practical utility of mathematically
oriented software research changed along the way.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, p. 1, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Verifying Object-Oriented Software:
Lessons and Challenges

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. A program verification system for modern software uses a host of
technologies, like programming language semantics, formalization of good pro-
gramming idioms, inference techniques, verification-condition generation, and
theorem proving. In this talk, I will survey these techniques from the perspective
of the Spec# programming system, of which I will also give a demo. I will reflect
on some lessons learned from building automatic program verifiers, as well as
highlight a number of remaining challenges.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, p. 2, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Shape Analysis by Graph Decomposition

R. Manevich"*, J. Berdine?, B. Cook?, G. Ramalingam?, and M. Sagiv'

1 Tel Aviv University
{rumster,msagiv}@post.tau.ac.il
2 Microsoft Research India
grama@microsoft.com
3 Microsoft Research Cambridge
{bycook, jjb}@microsoft.com

Abstract. Programs commonly maintain multiple linked data struc-
tures. Correlations between multiple data structures may often be non-
ezistent or irrelevant to verifying that the program satisfies certain safety
properties or invariants. In this paper, we show how this independence
between different (singly-linked) data structures can be utilized to per-
form shape analysis and verification more efficiently. We present a new
abstraction based on decomposing graphs into sets of subgraphs, and
show that, in practice, this new abstraction leads to very little loss of
precision, while yielding substantial improvements to efficiency.

1 Introduction

We are interested in verifying that programs satisfy various safety properties
(such as the absence of null dereferences, memory leaks, dangling pointer deref-
erences, etc.) and that they preserve various data structure invariants.

Many programs, such as web-servers, operating systems, network routers,
etc., commonly maintain multiple linked data-structures in which data is added
and removed throughout the program’s execution. The Windows IEEE 1394
(firewire) device driver, for example, maintains separate cyclic linked lists that
respectively store bus-reset request packets, data regarding CROM calls, data re-
garding addresses, and data regarding ISOCH transfers. These lists are updated
throughout the driver’s execution based on events that occur in the machine.
Correlations between multiple data-structures in a program, such as those illus-
trated above, may often be non-existent or irrelevant to the verification task of
interest. In this paper, we show how this independence between different data-
structures can be utilized to perform verification more efficiently.

Many scalable heap abstractions typically maintain no correlation between
different points-to facts (and can be loosely described as independent attribute
abstractions in the sense of [7]). Such abstractions are, however, not precise
enough to prove that programs preserve data structure invariants. More precise
abstractions for the heap that use shape graphs to represent complete heaps [17],
however, lead to exponential blowups in the state space.

* This research was partially supported by the Clore Fellowship Programme. Part of
this research was done during an internship at Microsoft Research India.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 3-{I8 2007.
© Springer-Verlag Berlin Heidelberg 2007

4 R. Manevich et al.

In this paper, we focus on (possibly cyclic) singly-linked lists and introduce
an approximation of the full heap abstraction presented in [13]. The new graph
decomposition abstraction is based on a decomposition of (shape) graphs into sets
of (shape) subgraphs (without maintaining correlations between different shape
subgraphs). In our initial empirical evaluation, this abstraction produced results
almost as precise as the full heap abstraction (producing just one false positive),
while reducing the state space significantly, sometimes by exponential factors,
leading to dramatic improvements to the performance of the analysis. We also
hope that this abstraction will be amenable to abstraction refinement techniques
(to handle the cases where correlations between subgraphs are necessary for
verification), though that topic is beyond the scope of this paper.

One of the challenges in using a subgraph abstraction is the design of safe and
precise transformers for statements. We show in this paper that the computation
of the most precise transformer for the graph decomposition abstraction is FNP-
complete.

We derive efficient, polynomial-time, transformers for our abstraction in sev-
eral steps. We first use an observation by Distefano et al. [3] and show how
the most precise transformer can be computed more efficiently (than the naive
approach) by: (a) identifying feasible combinations of subgraphs referred to by a
statement, (b) composing only them, (c) transforming the composed subgraphs,
and (d) decomposing the resulting subgraphs. Next, we show that the trans-
formers can be computed in polynomial time by omitting the feasibility check
(which entails a possible loss in precision). Finally, we show that the resulting
transformer can be implemented in an incremental fashion (i.e., in every iter-
ation of the fixed point computation, the transformer reuses the results of the
previous iteration).

We have developed a prototype implementation of the algorithm and com-
pared the precision and efficiency (in terms of both time and space) of our new
abstraction with that of the full heap abstraction over a standard suite of shape
analysis benchmarks as well as on models of a couple of Windows device drivers.
Our results show that the new analysis produces results as precise as the full
heap-based analysis in almost all cases, but much more efficiently.

A full version of this paper contains extra details and proofs [I1].

2 Overview

In this section, we provide an informal overview of our approach. Later sections
provide the formal details.

Fig. [l shows a simple program that adds elements into independent lists: a
list with a head object referenced by a variable h1 and a tail object referenced
by a variable t1, and a list with a head object referenced by a variable h2 and
a tail object referenced by a variable t2. This example is used as the running
example throughout the paper. The goal of the analysis is to prove that the data
structure invariants are preserved in every iteration, i.e., at label L1 variables hl

Shape Analysis by Graph Decomposition 5

//@assume hl!'=null && hl==t1 && hl.n==null && h2!=null && h2==t2 && h2.n==null
//@invariant Reach(hl,t1) && Reach(h2,t2) && DisjointLists(hl,t1)
EnqueueEvents() {
L1: while (...) {

List temp = new List(getEvent());

if (nondet()) {

L2: tl.n = temp;
L3: tl = temp;
} else {
t2.n = temp;
t2 = temp;
oyl

Fig. 1. A program that enqueues events into one of two lists. nondet () returns either
true or false non-deterministically.

and t1 and variables h2 and t2 point to disjoint acyclic lists, and that the head
and tail pointers point to the first and last objects in every list, respectively.

The shape analysis presented in [I3] is able to verify the invariants by gener-
ating, at program label L1, the 9 abstract states shown in Fig. [2] These states
represent the 3 possible states that each list can have: a) a list with one element,
b) a list with two elements; and ¢) a list with more than two elements. This
analysis uses a full heap abstraction: it does not take advantage of the fact that
there is no interaction between the lists, and explores a state-space that contains
all 9 possible combinations of cases {a, b, ¢} for the two lists.

hi t1

h2 t2

Fig. 2. Abstract states at program label L1, generated by an analysis of the program
in Fig. [[l using a powerset abstraction. Edges labeled 1 indicate list segments of length
1, whereas edges labeled with >1 indicate list segments of lengths greater than 1.

The shape analysis using a graph decomposition abstraction presented in this
paper, represents the properties of each list separately and generates, at program
label L1, the 6 abstract states shown in Fig. Bl For a generalization of this
program to k lists, the number of states generated at label L1 by using a graph
decomposition abstraction is 3 x k, compared to 3* for an analysis using a full
heap abstraction, which tracks correlations between properties of all k lists.

6 R. Manevich et al.

hi t1 h1 tl hi tl h2 2 h2 2 h2 2
M1 M2 M3 M4 M5 MG

Fig. 3. Abstract states at program label L1, generated by an analysis of the program
in Fig. [l using the graph decomposition abstraction

In many programs, this exponential factor can be significant. Note that in cases
where there is no correlation between the different lists, the new abstraction of
the set of states is as precise as the full heap abstraction: e.g., Fig. Bl and Fig.
represent the same set of concrete states.

We note that in the presence of pointers, it is not easy to decompose the
verification problem into a set of sub-problems to achieve similar benefits. For
example, current (flow-insensitive) alias analyses would not be able to identify
that the two lists are disjoint.

3 A Full Heap Abstraction for Lists

In this section, we describe the concrete semantics of programs manipulating
singly-linked lists and a full heap abstraction for singly-linked lists.

A Simple Programming Language for Singly-Linked Lists. We now de-
fine a simple language and its concrete semantics. Our language has a single
data type List (representing a singly-linked list) with a single reference field n
and a data field, which we conservatively ignore.

There are five types of heap-manipulating statements: (1) x=new List(),
(2) x=null, (3) x=y, (4) x=y.n, and (5) x.n=y. Control flow is achieved by
using goto statements and assume statements of the form assume (x==y) and
assume (x!=y). For simplicity, we do not present a deallocation, free(x), state-
ment and use garbage collection instead. Our implementation supports memory
deallocation, assertions, and detects (mis)use of dangling pointers.

Concrete States. Let PVar be a set of variables of type List. A concrete program
state is a triple C = (UY, env®,n®) where UY is the set of heap objects, an
environment env® : PVarU {null} — U® maps program variables (and null)
to heap objects, and n® : UY — UY, which represents the n field, maps heap
objects to heap objects. Every concrete state includes a special object vy, such
that env(null) = vy, We denote the set of all concrete states by States.

Concrete Semantics. We associate a transition function [sf] with every statement
st in the program. Each statement st takes a concrete state C', and transforms
it to a state C' = [st](C). The semantics of a statement is given by a pair
(condition, update) such that when the condition specified by condition holds the
state is updated according to the assignments specified by update. The concrete
semantics of program statements is shown in Tab. [l

Shape Analysis by Graph Decomposition 7

Table 1. Concrete semantics of program statements. Primed symbols denote post-
execution values. We write x,y, and 2’ to mean env(z), env(y), and env' (), respectively.

Statement Condition Update

x=new List() 2’ = Vpew, Where v,e is a fresh List object
n' = Av. (V= "Vnew ? null : nv))

x=null 2’ = null

x=y 2=y

X=y.n y#null 1 =n(y)

X.n=y z£null n'=Av.(v=z?y : n())

assume(x!=y) x #y
assume (x==y) v =y

3.1 Abstracting List Segments

The abstraction is based on previous work on analysis of singly-linked lists [13].
The core concepts of the abstraction are interruptions and uninterrupted list.
An object is an interruption if it is referenced by a variable (or null) or shared
(i.e., has two or more predecessors). An uninterrupted list is a path delimited by
two interruptions that does not contain interruptions other than the delimiters.

Definition 1 (Shape Graphs). A shape graph G = (V¢, E, env®, lenG) is
a quadruple where VC is a set of nodes, EC is a set of edges, env® : PVarU
{nully — VY maps variables (and null) to nodes, and len® : EG — pathlen
assigns labels to edges. In this paper, we use pathlen = {1, >1}

We denote the set of shape graphs by SGpy,,, omitting the subscript if no
confusion is likely, and define equality between shape graphs by isomorphism.
We say that a variable x points to a node v € V& if env®(x) = v.

We now describe how a concrete state C = (U, env®, n®) is abstracted into
a shape graph G = (V& E%, em©, lenG) by the function 3FH : States — SG.
First, we remove any node in U that is not reachable from a (node pointed-
to by a) program variable. Let PtVar(C) be the set of objects pointed-to by
some variable, and let Shared(C) the set of heap-shared objects. We create a
shape graph SF7(C) = (VE, EC, em© len®) where VE = PtVar(C)UShared(C),
EY = {(u,v) | (u,...,v) is an uninterrupted list}, env” restricts env® to V&,
and lenG(u,v) is 1 if the uninterrupted list from u to v has one edge and >1
otherwise. The abstraction function o™ is the point-wise extension of 8¥¥ to
sets of concrete statesd. We say that a shape graph is admissible if it is in the
image of B7H.

! The abstraction in [I3] is more precise, since it uses the abstract lengths {1, 2, > 2}.
We use the lengths {1, > 1}, which we found to be sufficiently precise, in practice.

2 In general, the point-wise extension of a function f : D — D is a function f :
20 — 2P defined by f(S) = {f(s) | s € S}. Similarly, the extension of a function
f:D — 2P is a function f:2” — 2P defined by f(S) = Uses f(5)

8 R. Manevich et al.

hi t 2 h2 p1 t1 2 h2
OPCROBOB@L OO CALOA@EOAO
(a) (b)

Fig. 4. (a) A concrete state, and (b) The abstraction of the state in (a)

Proposition 1. A shape graph is admissible iff the following properties hold:
(i) Every node has a single successor; (it) Every node is pointed-to by a variable
(or null) or is a shared node, and (i) Every node is reachable from (a node
pointed-to by) a variable.

We use Prop. [l to determine if a given graph is admissible in linear time and to
conduct an efficient isomorphism test for two shape graphs in the image of the
abstraction. It also provides a bound on the number of admissible shape graphs:
25n*+10n+8 where p = |PVar].

Ezample 1. Fig.d{a) shows a concrete state that arises at program label L1 and
Fig. E(b) shows the shape graph that represents it. O

Concretization. The function ¥y : SG — 25!4%¢s returns the set of concrete
states that a shape graph represents: v'#(G) = {C | BF#(C) = G}. We define
the concretization of sets of shape graphs by using its point-wise extension. We
now have the Galois Connection (25tates of'H ~FH 9SG,

Abstract Semantics. The most precise, a.k.a best, abstract transformer [2] of
a statement is given by [sf]# = o o [st] o yH. An efficient implementation
of the most precise abstract transformer is shown in the full version [I1].

4 A Graph Decomposition Abstraction for Lists

In this section, we introduce the abstraction that is the basis of our approach
as an approximation of the abstraction shown in the previous section. We define
the domain we use—245%G, the powerset of atomic shape subgraphs—as well as
the abstraction and concretization functions between 2°¢ and 245%¢,

4.1 The Abstract Domain of Shape Subgraphs

Intuitively, the graph decomposition abstraction works by decomposing a shape
graph into a set of shape subgraphs. In principle, different graph decomposi-
tion strategies can be used to get different abstractions. However, in this paper,
we focus on decomposing a shape graph into a set of subgraphs induced by
its (weakly-)connected components. The motivation is that different weakly con-
nected components mostly represent different “logical” lists (though a single list
may occasionally be broken into multiple weakly connected components during
a sequence of pointer manipulations) and we would like to use an abstraction

Shape Analysis by Graph Decomposition 9

that decouples the different logical lists. We will refer to an element of SGpyy,
as a shape graph, and an element of SGy,.s for any Vars C PVar as a shape
subgraph. We denote the set of shape subgraphs by SSG and define Vars(G) to
be the set of variables that appear in G, i.e., mapped by env® to some node.

4.2 Abstraction by Graph Decomposition

We now define the decomposition operation. Since our definition of shape graphs
represents null using a special node, we identify connected components after
excluding the null node. (Otherwise, all null-terminated lists, i.e. all acyclic lists,
will end up in the same connected component.)

Definition 2 (Projection). Given a shape subgraph G = (V, E, env, len) and
a set of nodes W C V, the subgraph of G induced by W, denoted by G|w,
is the shape subgraph (W, E' ent,len’), where E' = EN (W x W), ent/ =
envN (Vars(G) x W), and len’ = len N (E' X pathlen).

Definition 3 (Connected Component Decomposition). For a shape sub-
graph G = (V, E, env, len), let R = E'" be the reflerive, symmetric, transitive
closure of the relation E' = E\ {(Vnui, v), (V,vpuu) | v € V'}. That is, R does
not represent paths going through null. Let [R] be the set of equivalence classes
of R. The connected component decomposition of G is given by

Components(G) = {G|c: | C" = C U {vpu},C € [R]} .
Ezample 2. Referring to Fig.[2and Fig.[3l we have Components(Sz)={M;, Ms}.

Abstracting Away Null-value Correlations. The decomposition Components
manages to decouple distinct lists in a shape graph. However, it fails to decouple
lists from null-valued variables.

y y X X

if (?) x = new List() else x = null; il l il i i 1

y = new List(); O~ O~ Ob
M, Mo M3

(a) (b)

Fig.5. (a) A code fragment; and (b) Shape subgraphs arising after executing y=new
List(). Mi: y points to a list and x is not null, M>: y points to a list and x is null;
and Ms: x points to a list and y is not null.

Ezample 3. Consider the code fragment shown in Fig. Bla) and the shape sub-
graphs arising after y=new List(). y points to a list (with one cell), while x
is null or points to another list (with one cell). Unfortunately, the y list will
be represented by two shape subgraphs in the abstraction, one corresponding
to the case that x is null (Mz) and one corresponding to the case that x is not

10 R. Manevich et al.

null (My). If a number of variables can be optionally null, this can lead to an
exponential blowup in the representation of other lists! Our preliminary investi-
gations show that this kind of exponential blow-up can happen in practice. 0O

The problem is the occurrence of shape subgraphs that are isomorphic except
for the null variables. We therefore define a coarser abstraction by decompos-
ing the set of variables that point to the null node. To perform this further
decomposition, we define the following operations:

— nullvars : SSG — 2PV returns the set of variables that point to null in a
shape subgraph.

— unmap : SSG x 2PV — SSG removes the mapping of the specified variables
from the environment of a shape subgraph.

— DecomposeNullVars : SSG — 25Y takes a shape subgraph and returns: (a)
the given subgraph without the null variables, and (b) one shape subgraph
for every null variable, which contains just the null node and the variable:

DecomposeNullVars(G) = {unmap(G, nullvars(G))}U
{unmap(Gly,,,, Vars(G) \ {var} | var € nullvars(G)} .

In the sequel, we use the point-wise extension of DecomposeNullVars.

We define the set ASSG of atomic shape subgraphs to be the set of subgraphs
that consist of either a single connected component or a single null-variable fact
(i.e., a single variable pointing to the null node). Non-atomic shape subgraphs
correspond to conjunctions of atomic shape subgraphs and are useful intermedi-
aries during concretization and while computing transformers.

The abstraction function %P : SG — 2495C is given by

BEP(G) = DecomposeNullVars(Components(G)) .

The function oGP : 256 — 2455G ig the point-wise extension of 3¢P. Thus,

ASSG = a%P(SG) is the set of shape subgraphs in the image of the abstraction.

Note: We can extend the decomposition to avoid exponential blowups created
by different sets of variables pointing to the same (non-null) node. However, we
believe that such correlations are significant for shape analysis (as they capture
different states of a single list) and abstracting them away can lead to a significant
loss of precision. Hence, we do not explore this possibility in this paper.

4.3 Concretization by Composition of Shape Subgraphs

Intuitively, a shape subgraph represents the set of its super shape graphs. Con-
cretization consists of connecting shape subgraphs such that the intersection of
the sets of shape graphs that they represent is non-empty. To formalize this, we
define the following binary relation on shape subgraphs.

Definition 4 (Subgraph Embedding). We say that a shape subgraph G’ =
(V' E', ent/, len) is embedded in a shape subgraph G = (V, E, env, len), denoted

Shape Analysis by Graph Decomposition 11

G' C G, if there exists a function f : V. — V' such that: (i) (u,v) € E iff
(f(uw), f(v)) € E'; (i) f(env(z)) = ent/(z) for every x € Vars(G); and (i) for
every © € Vars(G') \ Vars(G), f= (ent(z)) NV =0 or ent/ (x) = ent/ (null)

Thus, for any two atomic shape subgraphs G and G', G' C G iff G = G'.

We make (SSG,C) a complete partial order by adding a special element L to
represent infeasible shape subgraphs, and define 1. C G for every shape subgraph
(. We define the operation compose : SSG x SSG — SSG that accepts two shape
subgraphs and returns their greatest lower bound (w.r.t. to the C ordering). The
operation naturally extends to sets of shape subgraphs.

Ezxample 4. Referring to Fig. Bl and Fig. Bl we have S; C M; and S; C My, and
compose(My, My) = S;. O

The concretization function y&P : 245G _, 256G ig defined by

Y9P(XG) = {G| G = compose(Y),Y C XG, G is admissible} .

This gives us the Galois Connection (25¢, q@P &P 245G

Properties of the Abstraction. Note that there is neither a loss of precision
nor a gain in efficiency (e.g., such as a reduction in the size of the represen-
tation) when we decompose a single shape graph, i.e., y¢P(39P(Q)) = {G}.
Both potentially appear when we abstract a set of shape graphs by decomposing
each graph in a set. However, when there is no logical correlation between the
different subgraphs (in the graph decomposition), we will gain efficiency without
compromising precision.

Ezxample 5. Consider the graphs in Fig. Pl and Fig. Bl Abstracting S; gives
BEP(S1) = {My, My}. Concretizing back, gives y¢P({ My, My}) = {S1}. Ab-
stracting S5 yields 9P (S5) = {Ma, M5}. Concretizing { My, My, My, M5} re-
sults in {57, S2, 54, S5}, which overapproximates {51, S5}. O

5 Developing Efficient Abstract Transformers
for the Graph Decomposition Abstraction

In this section, we show that it is hard to compute the most precise trans-
former for the graph decomposition abstraction in polynomial time and develop
sound and efficient transformers. We demonstrate our ideas using the statement
t1.n=temp in the running example and the subgraphs in Fig. @ and Fig. Bl

An abstract transformer Ty : 24556 — 2455G {5 sound for a statement st if
for every set of shape subgraphs XG the following holds:

(@ o [st]* o 4P)(XG) C Tu(XG) . (1)

3 We define f~'(2) = {y €V . f(y) = x}.

12 R. Manevich et al.

temp tl temp tl temp tl temp

6»0 {5»8}@

(a) (b)

Fig. 6. (a) A subgraph at label L2 in Fig. [[] and (b) Subgraphs at L3 in Fig. [l

5.1 The Most Precise Abstract Transformer

We first show how the most precise transformer [st]“P = aP o [st]# o y¢P can
be computed locally, without concretizing complete shape graphs. As observed by
Distefano et al. [3], the full heap abstraction transformer [st]# can be computed
by considering only the relevant part of an abstract heap. We use this observation
to create a local transformer for our graph decomposition abstraction.

The first step is to identify the subgraphs “referred” to by the statement st.
Let Vars(st) denote the variables that occur in statement st. We define:

— The function modcomps,, : 255¢ — 295F returns the shape subgraphs that
have a variable in Vars(st): modcompsy,(XG) = {G € XG | Vars(G) N
Vars(st) £ 0} .

— The function samecomps, : 25°¢ — 255¢ returns the complementary subset:
samecomps g, (XG) = XG \ modcomps ,(XG) .

Ezample 6. modcompsyy yoyemp({Ma, ..., Mz}) = {My, M2, M3, M7} and
5amecompsyy y-vemp({M1, ... , Mr}) = {My, M5, Me}. |

Note that the transformer [[sf]# operates on complete shape graphs. However, the
transformer can be applied, in a straightforward fashion, to any shape subgraph
G as long as G contains all variables mentioned in st (i.e., Vars(G) 2 Vars(st)).
Thus, our next step is to compose subgraphs in modcomps,(XG) to generate
subgraphs that contain all variables of st. However, not every set of subgraphs
in modcomps,(XG) is a candidate for this composition step.

Given a set of subgraphs XG, a set XG' C XG, is defined to be weakly feasible
in XG if compose(XG') #L. Further, we say that XG' is feasible in XG if there
exists a subset XR C XG such that compose(XG' U XR) is an admissible shape
graph (i.e., 3G € SG: XG' C a“P(G) C XG).

Ezample 7. The subgraphs M; and M7y are feasible in {My, ... , M7}, since they
can be composed with M, to yield an admissible shape graph. However, M7 and
M> contain common variables and thus { M7, M3} is not (even weakly) feasible
in {Mj,...,Mz7}. In Fig.[1 the shape subgraphs M; and M, are weakly-feasible
but not feasible in {Mj,...,Ms} (there is no way to compose subgraphs to
include w, since My and My and M3 and My are not weakly-feasible.). a

Shape Analysis by Graph Decomposition 13
X z WX y w Y z
1 1 1 1 1
A41 A42 A43 A44 A45
Fig. 7. A set of shape subgraphs over the set of program variables {x,y,z,w}

Let st be a statement with k = | Vars(st)| variables (k < 2 in our language). Let
M(=F) denote all subsets of size k or less of a set M. We define the transformer
for a heap-mutating statement st by:

TSP(XG) =let Y = {[st]#(G) | M = modcomps,(XG), R € M(=F),
G = compose(R), Vars(st) C Vars(Q),
R is feasible in XG}
in samecomps(XG) U aCP(Y) .

The transformer for an assume statement st is slightly different. An assume
statement does not modify incoming subgraphs, but filters out some subgraphs
that are not consistent with the condition specified in the assume statement. Note
that it is possible for even subgraphs in samecomps,,(XG) to be filtered out by
the assume statement, as shown by the following definition of the transformer:

TSP(XG) =let Y = {[s{]#(G) | R € XG=F+D),
G = compose(R), Vars(st) C Vars(Q),
R is feasible in XG}
in a%P(Y) .
Ezample 8. The transformer T.§5_.,.: (a) composes subgraphs: compose(Mj,
Myz), compose(Msy, M7), and compose(Ms, Mz); (b) finds that the three pairs
of subgraphs are feasible in {My, ..., Mz}; (c) applies the local full heap ab-
straction transformer [t1.n=temp]?, producing Mg, My, and Mg, respectively;
and (d) returns the final result: 7,52 ({M, ..., M7}) = {My, M5, Mg} U

tl.n=temp

{Ms, My, Mo} 0
Theorem 1. The transformer TGP is the most precise abstract transformer.

Although T.§P applies [sf]# to a polynomial number of shape subgraphs and
[s]# itself can be computed in polynomial time, the above transformer is still
exponential in the worst-case, because of the difficulty of checking the feasibility
of Rin XG. In fact, as we now show, it is impossible to compute the most precise
transformer in polynomial time, unless P=NP.

Definition 5 (Most Precise Transformer Decision Problem). The deci-
sion version of the most precise transformer problem is as follows: for a set of

atomic shape subgraphs XG, a statement st, and an atomic shape subgraph G,
does G belong to [st]“P(XG)?

14 R. Manevich et al.

Theorem 2. The most precise transformer decision problem, for the graph de-
composition abstraction presented above, is NP-complete (even when the input
set of subgraphs is restricted to be in the image of aSP). Similarly, checking if
XG' is feasible in XG is NP-complete.

Proof (sketch). By reduction from the EXACT COVER problem: given a uni-
verse U = {u1,...,u,} of elements and a collection of subsets A C 2V, decide
whether there exists a subset B C A such that every element u € U is contained
in exactly one set in B. EXACT COVER is known to be NP-complete [4]. O

5.2 Sound and Efficient Transformers

We safely replace the check for whether R is feasible in XG by a check for
whether R is weakly-feasible (i.e., whether compose(R) #.1) and obtain the
following transformer. (Note that a set of subgraphs is weakly-feasible iff no two
of the subgraphs have a common variable; hence, the check for weak feasibility
is easy.) For a heap-manipulating statement st, we define the transformer by:

ZI/’S@(XG) =let Y = {[s]]#(G) | M = modcomps,(XG), R € M(<F),
G = compose(R) #L, Vars(st) C Vars(G)}
in samecomps,(XG) U a®P(Y) .

For an assume statement st, we define the transformer by:

@(XG) =letY = {[[st]]#(G) |R e XG(gch)7
G = compose(R) #1, Vars(st) C Vars(G)}
in a%P(Y) .

By definition, (@) holds for T.G”. Thus, TSP is a sound transformer.

We apply several engineering optimizations to make the transformer TG effi-
cient in practice: (i) by preceding statements of the form x=y and x=y.n with an
assignment x=null, we specialize the transformer to achieve linear time complex-
ity; (ii) we avoid unnecessary compositions of shape subgraphs for statements
of the form x.n=y and assume (x==y), when a shape subgraph contains both x
and y; and (iii) assume statements do not change subgraphs, therefore we avoid
performing explicit compositions and propagate atomic subgraphs.

5.3 An Incremental Transformer

The goal of an incremental transformer is to compute TGD(XGU{D}) by reusing

T S§D (XG).We define the transformer for a heap-manipulating statement st by:

TGP(XGU{D}) = if D € modcomps,({D})
let Y = {[sf]#(G) | M = modcomps,,(XGU {D}),
Re M= DeR,
G = compose(R) #L, Vars(st) C Vars(G)}

Shape Analysis by Graph Decomposition 15

in TGD(XG) U a®P(Y)
else
TGP(XG)u{D} .

Here, if the new subgraph D is not affected by the statement, we simply add
it to the result. Otherwise, we apply the local full heap abstraction transformer
only to subgraphs composed from the new subgraph (for sets of subgraphs not
containing D, the result has been computed in the previous iteration).

For an assume statement st, we define the transformer by:

TGP(XGU{D}) =let Y = {[si]#(G) | R € (XGU {D})(<F+),
D € R,G = compose(R) #.L, Vars(st) C Vars(G)}
in T¢D(XG) U aCP(Y) .

Again, we apply the transformer only to (composed) subgraphs containing D.

6 Prototype Implementation and Empirical Results

Implementation. We implemented the analyses based on the full heap abstrac-
tion and the graph decomposition abstraction described in previous sections
in a system that supports memory deallocation and assertions of the form
assertAcyclicList(x), assertCyclicList(x), assertDisjointLists(x,y),
and assertReach(x,y). The analysis checks null dereferences, memory leakage,
misuse of dangling pointers, and assertions. The system supports non-recursive
procedure calls via call strings and unmaps variables as they become dead.

Ezample Programs. We use a set of examples to compare the full heap abstraction-
based analysis with the graph decomposition-based analysis. The first set of ex-
amples consists of standard list manipulating algorithms operating on a single list
(except for merge). The second set of examples consists of programs manipulating
multiple lists: the running example, testing an implementation of a queue by two
stackdd, joining 5 lists, splitting a list into 5 lists, and two programs that model as-
pects of device drivers. We created the serial port driver example incrementally,
first modeling 4 of the lists used by the device and then 5.

Precision. The results of running the analyses appear in Tab. The graph
decomposition-based analysis failed to prove that the pointer returned by getLast
is non—nulﬁ, and that a dequeue operation is not applied to an empty queue in
queue 2 stacks. On all other examples, the graph decomposition-based analysis
has the same precision as the analysis based on the full heap abstraction.

1 queue 2 stacks was constructed to show a case where the graph decomposition-based
analysis loses precision—determining that a queue is empty requires maintaining a
correlation between the two (empty) lists.

5 A simple feasibility check while applying the transformer of the assertion would have
eliminated the subgraph containing the null pointer.

16 R. Manevich et al.

Performance. The graph decomposition-based analysis is slightly less efficient
than the analysis based on the full heap abstraction on the standard list ex-
amples. For the examples manipulating multiple lists, the graph decomposition-
based analysis is faster by up to a factor of 212 (in the serial 5 lists example)
and consumes considerably less space. These results are also consistent with the
number of states generated by the two analyses.

Table 2. Time, space, number of states (shape graphs for the analysis based on full
heap abstraction and subgraphs for the graph decomposition-based analysis), and num-
ber of errors reported. Rep. Err. and Act. Err. are the number of errors reported, and
the number of errors that indicate real problems, respectively. #Loc indicates the
number of CFG locations. F.H. and G.D. stand for full heap and graph decomposition,
respectively.

enqueueEvents 02 02 1.2 0.7 248 178 0/0 0/0

)
)

) 01 02 06 07 110 216 0/0 1/0
68) 125 0.5 67.0 2.4 14,704 1,227 0/0 0/0
)
0

queue 2 stacks
join 5

split 5
1394diag
serial 4 lists

285 0.3 1262 1.7 27,701 827 0/0 0/0
180) 26.2 1.8 64.7 85 10,737 4,493 0/0 0/0
248) 36.9 1.7 230.1 11.7 27,851 6,020 0/0 0/0
278) 552.6 2.6 849.2 16.4 89,430 7,733 0/0 0/0

Benchmark Time (sec.) Space (Mb.) #States R. Err./A. Err.
(#Loc) F.H. G.D. F.H. G.D. F.H. G.D. F.H. G.D.
create (11) 0.03 0.19 0.3 0.3 27 36 0/0 0/0
delete (25) 0.17 027 08 09 202 260 0/0 0/0
deleteAll (12) 0.05 0.09 032 036 35 64 0/0 0/0
getLast (13) 0.06 0.13 042 047 67 99 0/0 1/0
getlast cyclic (13) 0.08 0.09 039 041 53 59 0/0 0/0
insert (23) 0.14 028 075 082 167 222 0/0 0/0
merge (37) 034 058 22 17 517 542 0/0 0/0
removeSeg (23) 0.19 033 096 1.0 253 283 0/0 0/0
reverse (13) 0.09 012 047 046 8 117 0/0 0/0
reverse cyclic (14) 0.14 0.36 06 14 129 392 0/0 0/0
reverse pan (12) 02 06 09 22 198 561 0/0 0/0
rotate (17) 0.05 0.08 03 04 33 50 0/0 0/0
search nulldref (7) 0.06 0.1 04 04 48 62 1/1 1/1
swap (13) 0.05 0.09 0.3 0.4 35 62 0/0 0/0

(

(

(

(

(

(

(

serial 5 lists

7 Related Work

Single-graph Abstractions. Some early shape analyses used a single shape graph
to represent the set of concrete states [SIIJI6]. As noted earlier, it is possible to
generalize our approach and consider different strategies for decomposing shape
graphs. Interestingly, the single shape graph abstractions can be seen as one
extreme point of such a generalized approach, which relies on a decomposition

Shape Analysis by Graph Decomposition 17

of a graph into its set of edges. The decomposition strategy we presented in this
paper leads to a more precise analysis.

Partially Disjunctive Heap Abstraction. In previous work [12], we described a
heap abstraction based on merging sets of graphs with the same set of nodes
into one (approximate) graph. The abstraction in the current paper is based
on decomposing a graph into a set of subgraphs. The abstraction in [12] suffers
from the same exponential blow-ups as the full heap abstraction for our running
example and examples containing multiple independent data structures.

Heap Analysis by Separation. Yahav et al. [I8] and Hackett et al. [6] decompose
heap abstractions to separately analyze different parts of the heap (e.g., to estab-
lish the invariants of different objects). A central aspect of the separation-based
approach is that the analysis/verification problem is itself decomposed into a set
of problem instances, and the heap abstraction is specialized for each problem
instance and consists of one sub-heap consisting of the part of the heap relevant
to the problem instance, and a coarser abstraction of the remaining part of the
heap ([6] uses a points-to graph). In contrast, we simultaneously maintain ab-
stractions of different parts of the heap and also consider the interaction between
these parts. (E.g., it is possible for our decomposition to dynamically change as
components get connected and disconnected.)

Application to Other Shape Abstractions. Lev-Ami et al. [9] present an abstrac-
tion that could be seen as an extension of the full heap abstraction in this paper
to more complex data structures, e.g., doubly-linked lists and trees. We believe
that applying the techniques in this paper to their analysis is quite natural and
can yield a more scalable analysis for more complex data structures. Distefano
et al. [3] present a full heap abstraction based on separation logic, which is sim-
ilar to the full heap abstraction presented in this paper. We therefore believe
that it is possible to apply the techniques in this paper to their analysis as well.
TVLA[I0] is a generic shape analysis system that uses canonical abstraction.
We believe it is possible to decompose logical structures in a similar way to
decomposing shape subgraphs and extend the ideas in this paper to TVLA.

Decomposing Heap Abstractions for Interprocedural Analysis. Gotsman et al. [5]
and Rinetzky et al. [T4/T5] decompose heap abstractions to create procedure
summaries for full heap+ abstractions. This kind of decomposition, which does
not lead to loss of precision (except when cutpoints are abstracted), is orthogonal
to our decomposition of heaps, which is used to reduce the number of abstract
states generated by the analysis. We believe it is possible to combine the two
techniques to achieve a more efficient interprocedural shape analysis.

Acknowledgements. We thank Joseph Joy from MSR India for helpful dis-
cussions on Windows device drivers.

18 R. Manevich et al.
References
1. D. R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Proc. Conf. on Prog. Lang. Design and Impl., New York, NY, 1990. ACM Press.
P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Los Angeles, California, 1977. ACM Press, New York,
NY.

. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on

separation logic. In In Proc. 13th Intern. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), 2006.

. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-

rated heap abstractions. In Proceedings of the 13th International Static Analysis
Symposium (SAS’06), 2006.

. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In

Proc. Symp. on Principles of Prog. Languages, 2005.

. N. D. Jones and S. S. Muchnick. Complexity of flow analysis, inductive assertion

synthesis, and a language due to dijkstra. In Program Flow Analysis: Theory and
Applications, chapter 12. Prentice-Hall, Englewood Cliffs, NJ, 1981.

. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like

structures. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 4. Prentice-Hall, Englewood Cliffs, NJ, 1981.

. T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape analysis with fast

and precise transformers. In CAV, 2006.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Proc. Static Analysis Symp., 2000.

R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape analysis
by graph decomposition. 2006. Full version.

R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. In Proceedings of the 11th International Symposium, SAS 2004, Lec-
ture Notes in Computer Science. Springer, August 2004.

R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In Proceedings of the 6th International
Conference on Verification, Model Checking and Abstract Interpretation, VMCAI
2005. Springer, January 2005.

N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for proce-
dure local heaps and its abstractions. In 32nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’05), 2005.

N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In 12th International Static Analysis Symposium (SAS), 2005.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1), January 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 2002.

E. Yahav and G. Ramalingam. Verifying safety properties using separation and
heterogeneous abstractions. In Proceedings of the ACM SIGPLAN 200/ conference
on Programming language design and implementation, 2004.

A Reachability Predicate for Analyzing
Low-Level Software

Shaunak Chatterjee!, Shuvendu K. Lahiri?, Shaz Qadeer?,
and Zvonimir Rakamari¢?

! Indian Institute of Technology, Kharagpur
2 Microsoft Research
3 University of British Columbia

Abstract. Reasoning about heap-allocated data structures such as
linked lists and arrays is challenging. The reachability predicate has
proved to be useful for reasoning about the heap in type-safe languages
where memory is manipulated by dereferencing object fields. Sound and
precise analysis for such data structures becomes significantly more chal-
lenging in the presence of low-level pointer manipulation that is prevalent
in systems software.

In this paper, we give a novel formalization of the reachability predi-
cate in the presence of internal pointers and pointer arithmetic. We have
designed an annotation language for C programs that makes use of the
new predicate. This language enables us to specify properties of many
interesting data structures present in the Windows kernel. We present
preliminary experience with a prototype verifier on a set of illustrative
C benchmarks.

1 Introduction

Static software verification has the potential to improve programmer productiv-
ity and reduce the cost of producing reliable software. By finding errors at the
time of compilation, these techniques help avoid costly software changes late in
the development cycle and after deployment. Many successful tools for detecting
errors in systems software have emerged in the last decade [2/T6JT0]. These tools
can scale to large software systems; however, this scalability is achieved at the
price of precision. Heap-allocated data structures are one of the most significant
sources of imprecision for these tools. Fundamental correctness properties, such
as control and memory safety, depend on intermediate assertions about the con-
tents of data structures. Therefore, imprecise reasoning about the heap usually
results in a large number of annoying false warnings increasing the probability
of missing the real errors.

The reachability predicate is important for specifying properties of linked data
structures. Informally, a memory location v is reachable from a memory location
u in a heap if either u = v or u contains the address of a location x and v
is reachable from z. Automated reasoning about the reachability predicate is
difficult for two reasons. First, reachability cannot be expressed in first-order

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 19{33] 2007.
© Springer-Verlag Berlin Heidelberg 2007

20 S. Chatterjee et al.

logic, the input language of choice for most modern and scalable automated
theorem provers. Second, it is difficult to precisely specify the update to the
reachability predicate when a heap location is updated.

Previous work has addressed these problems in the context of a reachability
predicate suitable for verifying programs written in high-level languages such
as Java and C# [22IT8[TIT75]. This predicate is inadequate for reasoning about
low-level software, which commonly uses programming idioms such as internal
pointers (addresses of object fields) and pointer arithmetic to move between
object fields. We illustrate this point with several examples in Section 21

The goal of our work is to build a scalable verifier for systems software that
can reason precisely about heap-allocated data structures. To this end, we intro-
duce in this paper a new reachability predicate suitable for verifying low-level
programs written in C. We describe how to automatically compute the precise
update for the new predicate and a method for reasoning about it using auto-
mated first-order theorem provers. We have designed a specification language
that uses our reachability predicate, allows succinct specification of interesting
properties of low-level software, and is conducive to modular program verifica-
tion. We have implemented a modular verifier for annotated C programs called
Havoc (Heap-Aware Verifier Of C). We report on our preliminary encouraging
experience with HAVOC on a set of small but interesting C programs.

1.1 Related Work

HAvoc is a static assertion checker for C programs in the same style that
ESC/Java [15] is a static checker for Java programs, and Spec# [] is a sta-
tic checker for C# programs. However, HAvOC is different in that it deals
with the low-level intricacies of C and provides reachability as a fundamen-
tal primitive in its specification language. The ability to specify reachability
properties also distinguishes HAVOC from other assertion checkers for C such as
CBMC [9] and SATURN [23]. The work of McPeak and Necula [20] allows reason-
ing about reachability, but only indirectly using ghost fields in heap-allocated ob-
jects. These ghost fields must be updated manually by the programmer whereas
Havoc provides the update to its reachability predicate automatically.

There are several verifiers that do allow the verification of properties based
on the reachability predicate. TVLA [19] is a verification tool based on abstract
interpretation using 3-valued logic [22]. It provides a general specification logic
combining first-order logic with reachability. Recently, they have also added an
axiomatization of reachability in first-order logic to the system [18]. However,
TVLA has mostly been applied to Java programs and, to our knowledge, cannot
handle the interaction of reachability with pointer arithmetic.

Caduceus [I4] is a modular verifier for C programs. It allows the program-
mer to write specifications in terms of arbitrary recursive predicates, which are
axiomatized in an external theorem prover. It then allows the programmer to
interactively verify the generated verification conditions in that prover. HAvoc
only allows the use of a fixed set of reachability predicates but provides much
more automation than Caduceus. All the verification conditions generated by

A Reachability Predicate for Analyzing Low-Level Software 21

(XX (XX]
Flink — Flink — Flink —
CBlink CBlink Blink
b
p+4
(XX] (XX
Flink | Flink | Flink -~
[Blink Blink [Blink

Fig. 1. Doubly-linked lists in Java and C

Havoc are discharged automatically using SMT (satisfiability modulo-theories)
provers. Unlike Caduceus, HAVOC understands internal pointers and the use of
pointer arithmetic to move between fields of an object.

Calcagno et al. have used separation logic to reason about memory safety
and absence of memory leaks in low-level code [7]. They perform abstract in-
terpretation using rewrite rules that are tailored for “multi-word lists”, a fixed
predicate expressed in separation logic. Our approach is more general since we
provide a family of reachability predicates, which the programmer can compose
arbitrarily for writing richer specifications (possibly involving quantifiers); the
rewriting involved in the generation and validation of verification conditions is
taken care of automatically by HAvoc. Their tool can infer loop invariants but
handles procedures by inlining. In contrast, HAvOcC performs modular reasoning,
but does not infer loop invariants.

2 Motivation

Consider the two doubly-linked lists shown in Figure [[I The list at the top
is typical of high-level object-oriented programs. The linking fields Flink and
Blink point to the beginning of the successor and predecessor objects in the list.
In each iteration of a loop that iterates over the linked list, the iterator variable
points to the beginning of a list object whose contents are accessed by a simple
field dereference. Existing work would allow properties of this linked list to be
specified using the two reachability predicates Rpyinx and Rpiink, €ach of which is
a binary relation on objects. For example, Rr1ink(a, b) holds for objects a and b
if a.Flink’ = b for some i > 0.

The list at the bottom is typical of low-level systems software. Such a list
is constructed by embedding a structure LIST ENTRY containing the two fields,
Flink and Blink, into the objects that are supposed to be linked by the list.

22 S. Chatterjee et al.

typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;
} LIST_ENTRY;

The linking fields, instead of pointing to the beginning of the list objects, point to
the beginning of the embedded linking structure. In each iteration of a loop that
iterates over such a list, the iterator variable contains a pointer to the beginning
of the structure embedded in a list object. A pointer to the beginning of the list
object is obtained by performing pointer arithmetic captured with the following
C macro.

#define CONTAINING_RECORD(a, T, f) \
(T *) ((int)a - (int)&((T *)0)->f)

This macro expects an internal pointer a to a field £ of an object of type T and
returns a typed pointer to the beginning of the object.

There are two good engineering reasons for this ostensibly dangerous pro-
gramming idiom. First, it becomes possible to write all list manipulation code
for operations such as insertion and deletion separately in terms of the type
LIST ENTRY. Second, it becomes easy to have one object be a part of several dif-
ferent linked lists; there is a field of type LIST ENTRY in the object corresponding
to each list. For these reasons, this idiom is common both in the Windows and
the Linux operating syste.

Unfortunately, this programming idiom cannot be modeled using the predi-
cates Re1ink and Rgiink described earlier. The fundamental reason is that these
lists may link objects via pointers at a potentially non-zero offset into the ob-
jects. Different data structures might use different offsets; in fact, the offset used
by a particular data structure is a crucial part of its specification. This is in stark
contrast to the first kind of linked lists in which the linking offset is guaranteed
to be zero.

The crucial insight underlying our work is that for analyzing low-level soft-
ware, the reachability predicate must be a relation on pointers rather than objects.
A pointer is a pair comprising an object and an integer offset into the object,
and the program memory is a map from pointers to pointers. We introduce an
integer-indexed set of binary reachability predicates: for each integer n, the pred-
icate Ry, is a binary relation on the set of pointers. Suppose n is an integer and p
and ¢ are pointers. Then Ry, (p, ¢) holds if and only if either p = ¢, or recursively
R.(*(p + n),q) holds, where *(p + n) is the pointer stored in memory at the
address obtained by incrementing p by n.

Our reachability predicate captures the insight that in low-level programs a
list of pointers is constructed by performing an alternating sequence of pointer
arithmetic (with respect to a constant offset) and memory lookup operations.
For example, let p be the address of the Flink field of an object in the linked
list at the bottom of Figure [l Then, the forward-going list is captured by the

! In Linux, the CONTAINING RECORD macro corresponds to the list entry macro.

A Reachability Predicate for Analyzing Low-Level Software 23

typedef struct { int data; LIST_ENTRY link; } A;
struct { LIST_ENTRY a; } g;

requires BS(&g.a) && B(&g.a, 0) == &g.a

requires forall(x, list(g.a.Flink, 0), x == &g.a || 0ff(x) == 4)
requires forall(x, list(g.a.Flink, 0), x == &g.a || Obj(x) != Obj(&g.a))
modifies decr(list(g.a.Flink, 0), 4)

ensures forall(x, list(g.a.Flink, 0), x == &g.a || deref(x-4) == 42)

void list_iterate() {
LIST_ENTRY *iter = g.a.Flink;
while (iter != &(g.a)) {
A *elem = CONTAINING_RECORD(iter, A, link);
elem->data = 42;
iter = iter->Flink;
}
}

Fig. 2. Example

pointer sequence p, *(p + 0), *(x(p + 0) + 0),... . Similarly, assuming that the
size of a pointer is 4, the backward-going list is captured by the pointer sequence
p,*x(p+4),x(x(p+4)+4),....

The new reachability predicate is a generalization of the existing reachability
predicate and can just as well describe the linked list at the top of Figure [l
Suppose the offset of the Flink field in the linked objects is k and ¢ is the
address of the start of some object in the list. Then, the forward-going list is
captured by q, *(qg+k), x(x(¢+k)+k), ... and the backward-going list is captured
by ¢,*(¢+k+4),*(x(¢g+k+4)+k+4),....

2.1 Example

We illustrate the use of our reachability predicate in program verification with
the example in Figure @l The example has a type A and a global structure g
with a field a. The field a in g and the field 1ink in the type A have the type
LIST ENTRY, which was defined earlier. These fields are used to link together in
a circular doubly-linked list the object g and a set of objects of type A. The field
a in g is the dummy head of this list. The procedure 1ist iterate iterates over
this list setting the data field of each list element to 42.

In addition to verifying the safety of each memory access in 1ist iterate, we
would like to verify two additional properties. First, the only parts of the caller-
visible state modified by list iterate are the data fields of the list elements.
Second, the data field of each list element is 42 when 1ist iterate terminates.

To prove these properties on 1ist iterate, it is crucial to have a precondition
stating that the list of objects linked by the Flink field of LIST ENTRY is circular.

24 S. Chatterjee et al.

To specify this property, we extend the notion of well-founded lists, first described
in an earlier paper [I7], to our new reachability predicate. The predicate R, is
well-founded with respect to a set BS of blocking pointers if for all pointers p,
the sequence *(p +n), *(*(p+n)+n), ... contains a pointer in BS. This member
of BS is called the block of p with respect to the offset n and is denoted by
B,[p]. Typical members of BS include pointer values that indicate the end of
linked lists, e.g., the null pointer or the head &g.a of the circular lists in our
example.

Our checker HAVOC enforces a programming discipline associated with well-
founded lists. HAVOC provides an auziliary variable BS whose value is a set of
pointers and allows program statements to add or remove pointers from BS.
Further, each heap update in the program is required to preserve the well-
foundedness of R,, with respect to each offset n of interest.

The first precondition of 1ist iterate uses the notion of well-foundedness to
express that &g.a is the head of a circular list. In this precondition, B(&g.a,0)
refers to By [&g.al. We use By to specify that the circular list is formed by the
Flink field, which is at offset 0 within LIST ENTRY. The second precondition illus-
trates how facts about an entire collection of pointers are expressed in our speci-
fication language. In this precondition, the expression 1ist(g.a.Flink,0) refers
to the finite and non-empty set of pointers in the sequence g.a.Flink,*(g.a.Flink
+ 0),... upto but excluding the pointer By(g.a.Flink). Also, the function 0ff
retrieves the offset (or the second component) from a pointer. This precondi-
tion states that the offset of each pointer in 1ist(g.a.Flink,0), excluding the
dummy head, is equal to 4, the offset of the field sequence link.Flink in the
type A. The third precondition uses the function 0bj, which retrieves the object
(or the first component) from a pointer. This precondition says that the object
of each pointer, excluding the dummy head, in 1list(g.a.Flink,0) is different
from the object of the dummy head.

The modifies clause illustrates yet another constructor of a set of pointers
provided by our language. If S is a set of pointers, then decr(S,n) is the set of
pointers obtained by decrementing each pointer in S by n. The modifies clause
captures the update of the data field at relative offset —4 from the members of
list(g.a.Flink,0).

The postcondition of the procedure introduces the operator deref, which
returns the content of the memory at a pointer address. This postcondition says
that the value of the data field of each object in the list, excluding the dummy
head, is 42.

Using loop invariants provided by us (not shown in the figure), HAvoc is able
to verify that the implementation of this procedure satisfies its specification.
Note that in the presence of potentially unsafe pointer arithmetic and casts, it
is nontrivial to verify that the heap update operation elem->data := 42 does
not change the linking structure of the list. Since HAVOC cannot rely on the
static type of the variable elem, it must prove that the offset of elem before the
operation is 0 and therefore the operation cannot modify either linking field.

A Reachability Predicate for Analyzing Low-Level Software 25

typedef struct { int x; int y[10]; } DATA;

DATA *create() { procedure create() returns d:ptr {
int a; var a:ptr;
a := call malloc(4);
DATA *d = d := call malloc(44);
(DATA *) malloc(sizeof (DATA));
init(d->y, 10, &a); call init(PLUS(d, Ptr(null,4)),
Ptr(null,10), a);
d->x = a; Mem[PLUS(d, Ptr(null,0))] := Mem[a];
call free(a);
return d;
} }
void init(int *in, int size, procedure init(in:ptr, size:ptr,
int *out) { out:ptr) {
int i; var i:ptr;
i=0; i := Ptr(null,0);
while (i < size) { while (LT(i, size)) {
in[i] = i; Mem[PLUS (in, i)] := i;
*out = *out + i; Mem[out] := PLUS(Mem[out], i);
it++; i := PLUS(i, Ptr(null,l));
} }
} }

Fig. 3. Translation of C programs

3 Operational Semantics of C

Our semantics for C programs depends on three fundamental types, the unin-
terpreted type ref of object references, the type int of integers, and the type
ptr = ref X int of pointers. Each variable in a C program, regardless of its
static type, contains a pointer value. A pointer is a pair containing an object
reference and an integer offset. An integer value is encoded as a pointer value
whose first component is the special constant null of type ref. The constructor
function Ptr : ref X int — ptr constructs a pointer value from its components.
The selector functions 0bj : ptr — ref and 0ff : ptr — int retrieve the first
and second component of a pointer value, respectively.

The heap of a C program is modeled using two map variables, Mem and Alloc,
and a map constant Size. The variable Mem maps pointers to pointers and intu-
itively represents the contents of the memory at a pointer location. The variable
Alloc maps object references to the set {UNALLOCATED, ALLOCATED, FREED}
and is used to model memory allocation. The constant Size maps object refer-
ences to positive integers and represents the size of the object. The procedure call
malloc(n) for allocating a memory buffer of size n returns a pointer Ptr(o,0)
where o is an object such that Alloc[o] = UNALLOCATED before the call and
Size[o] > n. The procedure modifies Alloc[o] to be ALLOCATED. The proce-
dure call free(p) for freeing a memory buffer whose address is contained in

26 S. Chatterjee et al.

p requires that Alloc[0bj(p)] == ALLOCATED and 0ff (p) == O and updates
Alloc[0bj(p)] to FREED. The full specification of malloc and free is given in
a detailed report [§].

Havoc takes an annotated C program and translates it into a BoogiePL [I1]
program. BoogiePL has been designed to be an intermediate language for pro-
gram verification tools that use automated theorem provers. This language is
simple and has well-defined semantics. The operational semantics of C, as in-
terpreted by HAvOC, is best understood by comparing a C program with its
BoogiePL translation. Figure [3] shows two procedures, create and init, on the
left and their translations on the right. The example uses the C struct type DATA.

Note that variables of both static type int and int* in C are translated
uniformly as variables of type ptr. The translation of the first argument d->y
of the call to init shows that we treat field accesses and pointer arithmetic
uniformly. Since the field y is at an offset 4 in DATA, we treat d->y as d+4. The
translation uses the function PLUS to model pointer arithmetic and the function
LT to model arithmetic comparison operations on the type ptr. The definitions
of these functions are also given in the detailed report [g].

The example also shows how we handle the & operator. In the procedure
create, the address of the local variable a is passed as an out-parameter to
the procedure init. Our translation handles this case by allocating a on the
heap. Note that our translator allocates a static variable on the heap only if
the program takes the address of that variable. For example, there is no heap
allocation for the local variable i in the procedure init. To prevent access to
the heap-allocated object corresponding to a local variable of a procedure, it is
freed at the end of the procedure.

4 Reachability and Pointer Arithmetic

We now give the formal definition of our new reachability predicate in terms
of the operational semantics of C as interpreted by HAavoc. As in our previ-
ous work [I7], we define the reachability predicate on well-founded heaps. Let
the heap be represented by the function Mem : ptr — ptr and let BS C ptr
be a set of pointers. We define a sequence of functions f : int x ptr — ptr
for i > 0 as follows: for all n € int and u € ptr, we have f(n,u) = u and
fi(n,u) = Mem[f*(n,u) + n] for all i > 0. Then Mem is well-founded with re-
spect to the set of blocking pointers BS and offset n if for all u € ptr, there
is i > 0 such that f%(n,u) € BS. If a heap is well-founded with respect to BS
and n, then the function idx, maps a pointer u to the least ¢ > 0 such that
fi(n,u) € BS. Using these concepts, we now define for each n € int, a predicate
R, C ptr x ptr and a function B,, : ptr — ptr.

Rufu,v] = Fi. 0 <i<idz,(u) Av= fi(n,u)
Bolu] = f*((n,u)
Suppose a program performs the operation Mem[x] := y to update the heap.

Then HAvOC performs the most precise update to the predicate R,, and the func-
tion B, by automatically inserting the following code just before the operation.

A Reachability Predicate for Analyzing Low-Level Software 27

n e it

e € Ezpr :=mn|x|addr(x) | e +e | e - e | deref(e) | block(e,n) |
0ld(x) | old deref(e) | old block(e,n)

S e Set ::= {e} | BS | list(e,n) | o1ld list(e,n) | array(e,n,e)

¢ € Formula ::= alloc(e) | old alloc(e) | Obj(e) == Obj(e) | 0ff(e) < 0ff(e) |
in(e,S) | ! ¢ | ¢ && ¢ | forall(x, S,)

C € CmpdSet ::= S | incr(C,n) | decr(C,n) | deref(C) | old deref(C)
union(C, C) | intersection(C,C) | difference(C, ()

Fig. 4. Annotation language

assert(R,[y,x — n] = BS[y])

B, := Au:ptr. Ryfu,x—n]? (BS[y] ?y : Bynly]): Bn[u]

R, = Au,v:ptr.
Rp[u, x — n]
? (Rn[[u,\]r]/\—\Rn[x—n,v]) Vv=x-—n V (-BS[y] ARu[y,v])
: Rpju, v

The assertion enforces that the heap stays well-founded with respect to the
blocking set BS and the offset n. The value of B,[u] is updated only if x — n
is reachable from u and otherwise remains unchanged. Similarly, the value of
Rp[u, v] is updated only if x — n is reachable from u and otherwise remains
unchanged. These updates are generalizations of the updates provided in our
earlier paper [I7] to account for pointer arithmetic.

We note that the ability to provide such updates as described above guar-
antees that if a program’s assertions —preconditions, postconditions, and loop
invariants— are quantifier-free, then its verification condition is quantifier-free
as well. This property is valuable because the handling of quantifiers is typi-
cally the least complete and efficient aspect of all theorem provers that combine
first-order reasoning with arithmetic.

5 Annotation Language

Our annotation language has three components: basic expressions that evaluate
to pointers, set expressions that evaluate to sets of pointers, and formulas that
evaluate to boolean values. The syntax for these expressions is given in Figure [

The set of basic expressions is captured by Expr. The expression addr(x)
represents the address of the variable x. The expression x represents the value
of x in the post-state and 0ld(x) refers to the value of x in the pre-state of the
procedure. The expressions deref(e) and old deref(e) refer to the value stored
in memory at the address e in the post-state and pre-state, respectively. The
expressions block(e,n) and old block(e,n) represent By[e] in the post-state
and pre-state of the procedure, respectively.

The set expressions are divided into the basic set expressions in Set and the
compound set expressions in CmpdSet. The expression array(e1, n, e2) refers to
the set of pointers {e1,e; +n,e; +2*n,...,e; + 0ff(es) *x n}. The expressions

28 S. Chatterjee et al.

// translation of requires ¢
requires [¢]

// translation of ensures ¢
ensures [¢]

// translation of modifies C

modifies Mem

ensures forall x:ptr: old(Alloc) [0bj(x)] == UNALLOCATED ||
old([in(x,O)]) I
old(Mem) [x] == Mem[x]

modifies R,

ensures forall x:ptr: 01d(Alloc) [0bj(x)] == UNALLOCATED ||
exists y:ptr:: old(Ry)[x,y] && old([in(y +n,C)]) ||
forall z:ptr:: old(Rn)[x,2] == Ry [x,2]

X7
X7
modifies B,
ensures forall x:ptr: old(Alloc) [0bj(x)] == UNALLOCATED ||
exists y:ptr:: old(Ry)[x,y] && old([in(y +n,C)]) ||
01d(Bn)[x] == By [¥]

// translation of frees D

modifies Alloc

ensures forall o:ref:: 0ld(Alloc) [o] == UNALLOCATED ||
(01d(]in(Ptx(o,0), D)]) &&
Alloc[0bj(x)] !'= UNALLOCATED) ||
Alloc[x] == old(Alloc) [x]

Fig. 5. Translation of requires ¢, ensures 1, modifies C, and frees D

list(e,n) and old list(e,n) represent the list of pointers described by the
reachability predicate R,, in the post-state and pre-state, respectively. The com-
pound set expressions include incr(C,n) and decr(C,n) which respectively in-
crement and decrement each element of C by n, and deref(C) and o1d deref(C)
which read the contents of memory at the members of C' in the post-state and
pre-state, respectively. The expressions union(C, C), intersection(C,C), and
difference(C, C) provide the basic set-theoretic operations.

Havoc is designed to be a modular verifier. Consequently, we allow each
procedure to be annotated by four possible specifications, requires ¢, ensures
1, modifies C, and frees D, where ¢,v € Formula and C,D € CmpdSet.
The default value for ¢ and % is true, and for C and D is (). The translation of
these specifications is given in Figure[Bl The translation refers to the translation
function | o |, which is defined in the Appendix of the detailed report [§]. We
also allow each loop to be annotated with a formula representing its invariant.

In Figure Bl the translation of requires ¢ and ensures ¢ is obtained in
a straightforward fashion by applying the translation function | o | to ¢ and
1) respectively. Then, there are four pairs of modifies and ensures clauses. The
translation of modifies C'is captured by the first three pairs and the translation
of frees D is captured by the fourth pair. Our novel use of set expressions in

A Reachability Predicate for Analyzing Low-Level Software 29

these specifications results in a significant reduction in the annotation overhead
at the C level.

The first pair of modifies and ensures clauses in Figure [states that the
contents of Mem remains unchanged at each pointer that is allocated and not a
member of C' in the pre-state of the procedure. The second pair is parameter-
ized by an integer offset n and specifies the update of R,,. Similarly, the third
pair specifies the update of B,,. Based on the set C' provided by the program-
mer in the modifies clause, one such pair is automatically generated for each
offset n of interest. The postcondition corresponding to R,, says that if the set
of pointers reachable from any pointer x is disjoint from the set decr(C,n),
then that set remains unchanged by the execution of the procedure. The post-
condition corresponding to B, says that if the set of pointers reachable from
any pointer x is disjoint from the set decr(C,n), then B, [x] remains unchanged
by the execution of the procedure. These two postconditions are guaranteed by
our semantics of reachability and the semantics of the modifies clause. Conse-
quently, HAVOC only uses these postconditions at call sites and does not attempt
to verify them. The set D in the annotation frees D is expected to contain only
pointers with offset 0. Then, the fourth pair states that the contents of Alloc re-
main unchanged at each object that is allocated and is such that a pointer to the
beginning of that object is not a member of D in the pre-state of the procedure.

6 Implementation

We have developed HAvVOC, a prototype tool for verifying C programs annotated
with specifications in our annotation language. We use the ESP [10] infrastruc-
ture to construct the control flow graph and parse the annotations. HAvoc
translates an annotated C program into an annotated BoogiePL program as
described in Section Bl The BOOGIE verifier generates a verification condition
(VC) from the BoogiePL description, which implies the partial correctness of the
BoogiePL program. The VC generation in BOOGIE is performed using a varia-
tion [3] of the standard weakest precondition transformer [I3]. The resulting VC
is checked for validity using the Simplify theorem prover [12].

6.1 Proving Verification Conditions

The verification condition generated is a formula in first-order logic with equality,
augmented with the following theories:

1. The theory of integer linear arithmetic with symbols +, < and constants
o —1,0,1,2,. ..

2. The theory of arrays with the select and update symbols [21].

3. The theory of pairs, consisting of the symbols for the pair constructor Ptr,
and the selector functions Obj and Off.

4. The theory of the new reachability predicate, consisting of the symbols R,,,
B,, BS and Mem.

30 S. Chatterjee et al.

Vu : ptr. u = Ptr(0bj(u),0ff(u))
Vz : ref,i:int. x = 0bj(Ptr(z,7))
)

Vz :ref,i:int. ¢ = 0ff(Ptr(x,i

Fig. 6. Axioms for the theory of pairs

To verify the verification conditions, the SIMPLIFY theorem prover requires
axioms about the theory of pairs and the theory of reachability. The axioms for
the theory of pairs are fairly intuitive and are given in Figure Bl The axioms
for the theory of reachability are given in Figure[7l Note that the symbol + in
Figure[Dis the addition operation on pointers. We have overloaded + for ease of
exposition. The first axiom defines that Ry, [u, v] is true if and only if either v = u,
or the pointer Mem[u + n] is not a blocking pointer in BS and R, [Mem[u + n], v] is
true. The second axiom similarly defines B, [u]. We call these two axioms the base
axioms of reachability because they attempt to capture the recursive definitions
of R,, and B,,.

Rnlu,v] & (v =uV (=BS[Mem[u + n|] A R, [Mem[u + n], v]))
v =B, [u] & (BS[Mem[u + n]] ? v = Mem[u + n] : v = By [Mem[u + n]])
Rn[u, v] A Rp[v, w] = Ry lu, w]
BS[u] ARp[v,u] = u="v
Rn[u,v] = Bplu] = By[v]
u = Mem[u + n] = BS[y]
—BS[Mem[u + n]] = Rn[Mem[u + n]] = Rn[u] \ {u}

Fig. 7. Derived axioms for the theory of reachability predicate. The variables u, v and
w are implicitly universally quantified.

It is well known that the reachability predicate (ours as well as the classic
one) cannot be expressed in first-order logic [6]. Hence, similar to our previous
work [I7], we provide a sound but (necessarily) incomplete axiomatization of the
theory by providing a set of derived axioms following the base axioms in Fig-
ure [Since the definitions of R,, and B,, are well-founded, these derived axioms
can be proved from the base axioms using well-founded induction. The derived
axioms are subtle generalizations of similar axioms presented for well-founded
lists without pointers [I7]. They have sufficed for all the examples in this paper.

7 Evaluation

In this section, we describe our experience applying HAVOC to a set of examples.
These examples illustrate the use of pointer arithmetic, internal pointers, arrays,
and linked lists in C programs. For each of these examples, we prove a variety
of partial correctness properties, including the absence of null dereferences.
Figure [lists the examples considered in this paper. iterate is the example
from Figure] in Section 2l iterate acyclic and array iterate are versions

A Reachability Predicate for Analyzing Low-Level Software 31

Example Time(s) Example Time(s)
iterate 1.8 array free 2.5
iterate acyclic 1.7 slist sorted insert 16.43
array iterate 1.4 dlist add 38.9
slist add 1.5 dlist remove 45.4
reverse acyclic 2.0 allocator 901.8

Fig. 8. Results of assertion checking. SIMPLIFY was used as the theorem prover. The
experiments were conducted on a 3.2GHz, 2GB machine running Windows XP.

of iterate for an acyclic list and an array, respectively. reverse acyclic per-
forms in-place reversal of an acyclic singly-linked list; we verify that the output
list is acyclic and contains the same set of pointers as the input list. The ex-
ample slist add adds a node to an acyclic singly-linked list. d1ist add and
dlist remove are the insertion and deletion routines for cyclic doubly-linked
lists used in the Windows kernel. The examples using doubly-linked lists require
the use of Ry and R4 to specify the lists reachable through the Flink and Blink
fields of the LIST ENTRY structure. The example slist sorted insert inserts a
node into a sorted (by the data field) linked list; we verify that the output list is
sorted. This example illustrates the use of arithmetic reasoning (using <) on the
data fields. The example array free takes as input an array a of pointers, and
iterates over the array to free the pointers that are not null. We check that an
object is freed at most once. To verify this property, we needed to express the
invariant that if 4 is distinet from j, then the pointers a[i] and a[j] are aliased
only if they both point to null.

The final example allocator is a low-level storage allocator that closely re-
sembles the malloc firstfit acyclic example described by Calcagno et al. [7].
The allocator maintains a list of free blocks within a single large object; each
node in the list maintains a pointer to the next element of the list and the size of
the free block in the node. Allocation of a block may result in either removing a
node (if the entire free block at the node is returned) from the list, or readjusting
the size of the free block (in case only a chunk of the free block is returned). We
check two main postconditions: (i) the allocated block (when a non null pointer
is returned) is a portion of some free block in the input list, and (ii) the free
blocks of the output list do not overlap. This example required the use of Ry to
specify the list of free blocks.

Figure [gives the running times taken by SIMPLIFY to discharge the veri-
fication conditions. The examples involving singly-linked lists and arrays take
only a few seconds. The examples involving doubly-linked lists take much longer
because they make heavy use of quantifiers to express the invariant that con-
nects the forward-going and backward-going links in a doubly-linked list. The
allocator example makes heavy use of arithmetic as well as quantifiers, and
therefore takes the longest to verify.

Interestingly, HAVOC revealed a bug in our implementation of the allocator.
This bug was caused by an interaction between pointer casting and pointer
arithmetic. Instead of the following correct code

32 S. Chatterjee et al.

return ((unsigned int) cursor) + sizeof (RegionHeader) ;
we had written the following incorrect code
return (unsigned int) (cursor + sizeof (RegionHeader));

Note that the two are different because the size of RegionHeader, the static
type of cursor, is different from the size of unsigned int. We believe that such
mistakes are common when dealing with low-level C code, and our tool can
provide great value in debugging such programs.

8 Conclusions and Future Work

In this work, we introduced a new reachability predicate suitable for reasoning
about data structures in low-level systems software. Our reachability predicate is
designed to handle internal pointers and pointer arithmetic on object fields. It is
a generalization of the classic reachability predicate used in existing verification
tools. We have designed an annotation language for C programs that allows
concise specification of properties of lists and arrays. We have also developed
Havoc, a verifier for C programs annotated with assertions in our specification
language.

We believe that HAavoc is a good foundation for building powerful safety
checkers for systems software based on automated first-order theorem proving.
We are currently working to extend HAvOC with techniques for inference and
abstraction to enable its use on realistic code bases inside Windows.

Acknowledgements. Our formalization of the C memory model has been
deeply influenced by discussions with Madan Musuvathi. We are grateful to
Stephen Adams, Henning Rohde, Jason Yang and Zhe Yang for their help with
the ESP infrastructure. Rustan Leino answered numerous questions about Sim-
plify and Boogie. Finally, we thank Tom Ball and Rustan Leino for providing
valuable feedback on the paper.

References

1. 1. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction.
In Verification, Model checking, and Abstract Interpretation (VMCAI ’05), LNCS
3385, pages 164-180, 2005.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), pages 203-213, 2001.

3. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools
and Engineering (PASTE ’05), pages 82-87, 2005.

4. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure and Interoperable Smart
Devices, LNCS 3362, pages 49-69, 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A Reachability Predicate for Analyzing Low-Level Software 33

J. Bingham and Z. Rakamarié¢. A logic and decision procedure for predicate ab-
straction of heap-manipulating programs. In Verification, Model Checking, and
Abstract Interpretation (VMCAI ’06), LNCS 3855, pages 207-221, 2006.

E. Bérger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Springer-
Verlag, 1997.

C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In Static Analysis Sym-
posium (SAS ’06), LNCS 4134, pages 182-203, 2006.

S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamari¢. A reachability predicate
for analyzing low-level software. Technical Report MSR-TR-2006-154, Microsoft
Research, 2006.

. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of

ANSI-C programs using SAT. Formal Methods in System Design (FMSD), 25:105—
127, September—November 2004.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in
polynomial time. In Programming Language Design and Implementation (PLDI
’02), pages 57-68, 2002.

R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research,
2005.

D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Technical report, HPL-2003-148, 2003.

E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18:453-457, 1975.

J. Filliatre and C. Marché. Multi-prover verification of C programs. In Inter-
national Conference on Formal Engineering Methods (ICFEM ’04), LNCS 3308,
pages 15-29, 2004.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Programming Language Design and Imple-
mentation (PLDI’02), pages 234-245, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages (POPL ’02), pages 58-70, 2002.

S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In
Principles of Programming Languages (POPL ’06), pages 115-126, 2006.

T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava, and G. Yorsh.
Simulating reachability using first-order logic with applications to verification of
linked data structures. In Conference on Automated Deduction (CADE ’05), LNCS
3632, pages 99-115, 2005.

T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analyses. In
Static Analysis Symposium (SAS ’00), LNCS 1824, pages 280-301, 2000.

S. McPeak and G. C. Necula. Data structure specifications via local equality
axioms. In Computer-Aided Verification (CAV ’05), LNCS 3576, pages 476-490,
2005.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245—
257, 1979.

S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis problems in lan-
guages with destructive updating. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(1):1-50, 1998.

Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability. In
Principles of Programming Languages (POPL ’05), pages 351-363, 2005.

Generating Representation Invariants of
Structurally Complex Data

Muhammad Zubair Malik, Aman Pervaiz, and Sarfraz Khurshid

The University of Texas at Austin, 1 University Station C5000, Austin, TX 78712
{mzmalik, pervaiz, khurshid}@ece.utexas.edu

Abstract. Generating likely invariants using dynamic analyses is becoming an
increasingly effective technique in software checking methodologies. This paper
presents Deryaft, a novel algorithm for generating likely representation invariants
of structurally complex data. Given a small set of concrete structures, Deryaft
analyzes their key characteristics to formulate local and global properties that
the structures exhibit. For effective formulation of structural invariants, Deryaft
focuses on graph properties, including reachability, and views the program heap
as an edge-labeled graph.

Deryaft outputs a Java predicate that represents the invariants; the predicate
takes an input structure and returns true if and only if it satisfies the invariants.
The invariants generated by Deryaft directly enable automation of various exist-
ing frameworks, such as the Korat test generation framework and the Juzi data
structure repair framework, which otherwise require the user to provide the in-
variants. Experimental results with the Deryaft prototype show that it feasibly
generates invariants for a range of subject structures, including libraries as well
as a stand-alone application.

1 Introduction

Checking programs that manipulate dynamically-allocated, structurally complex data
is notoriously hard. Existing dynamic and static analyses [[19,/4}/8,120,2,[10] that check
non-trivial properties of such programs impose a substantial burden on the users, e.g.,
by requiring the users to provide invariants, such as loop or representation invariants,
or to provide complete executable implementations as well as specifications.

We present Deryaft, a novel framework for generating representation invariants of
structurally complex data given a (small) set of structures. The generated invariants
serve various purposes. Foremost, they formally characterize properties of the given
structures. More importantly, they facilitate the use of various analyses. To illustrate,
consider test generation using a constraint solver, such as Korat [4], which requires
the user to provide detailed invariants. Deryaft enables using just a handful of small
structures to allow these solvers to efficiently enumerate a large number of tests and
to systematically test code. The generated invariants can similarly be used directly in
other tools, such as ESC/Java [8], that are based on the Java Modeling Language [17],
which uses Java expressions, or simply be used as assertions for runtime checking, e.g.,
to check if a public method establishes the class invariant. The invariants even enable
non-conventional assertion-based analyses, such as repair of structurally complex data,
e.g., using the Juzi framework [15].

0. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 34-49.12007.
(© Springer-Verlag Berlin Heidelberg 2007

Generating Representation Invariants of Structurally Complex Data 35

Given a set of structures, Deryaft inspects them to formulate a set of hypotheses
on the underlying structural as well as data constraints that are likely to hold. Next, it
checks which hypotheses actually hold for the structures. Finally, it translates the valid
hypotheses into a Java predicate that represents the structural invariants of the given
structures. The predicate takes an input structure, traverses it, and returns true if and
only if the input satisfies the invariants.

Deryaft views the program heap as an edge-labeled graph whose nodes represent ob-
jects and whose edges represent fields [[14]] and focuses on generating graphs properties,
which include reachability. To make invariant generation feasible, Deryaft incorporates
a number of heuristics, which allow it to hone on relevant properties. For non-linear
structures, Deryaft also conjectures properties about lengths of paths from the root, and
completeness of acyclic structures. Thus, it conjectures local as well as global proper-
ties. In addition to properties of structure, Deryaft also conjectures properties among
data values in the structures. For example, it conjectures whether the key in a node
is larger than all the keys in the node’s left sub-tree, or whether the value of a field
represents a function of the number of nodes in the structure.

The undecidability of the problem that Deryaft addresses necessitates that its con-
straint generation, in general, cannot be sound and complete [7]. The generated con-
straints are sound with respect to the set of given structures. Of course, unseen struc-
tures may or may not satisfy them. Deryaft’s generation is not complete: it may not
generate all possible constraints that hold for the given set of structures. We provide a
simple API for allowing users to systematically extend the pool of invariants Deryaft
hypothesizes.

Even though Deryaft requires a small set of structures to be given, if a method that
constructs structures is given instead, Deryaft can use the method in place of the struc-
tures. For example, consider a method that adds an element to a binary search tree.
Exhaustive enumeration of small sequences of additions of say up to three arbitrarily
selected elements, starting with an empty tree, automatically provides a set of valid bi-
nary search trees (assuming the implementation of add is correct) that Deryaft requires.

Deryaft’s approach has the potential to change how programmers work. Test-first
programming [3]] already advocates writing tests before implementations. Having writ-
ten a small test suite, the user can rely on Deryaft to generate an invariant that represents
a whole class of valid structures; Korat can use this invariant to enumerate a high quality
test suite; Juzi can use the same invariant to provide data structure repair. Thus, Deryaft
facilitates both systematic testing at compile-time as well as error recovery at runtime.

We make the following contributions:

—Algorithm. Deryaft is a novel algorithm for generating representation invariants of
structurally complex data from a given small set of structures;

—Java predicates. Deryaft generates invariants as Java predicates that can directly
be used in other applications, e.g., for test generation and error recovery;

—Experiments. We present experiments using our prototype to show the feasibility
of generating invariants for a variety of data structures, including libraries as well
as a stand-alone application.

36 M.Z. Malik, A. Pervaiz, and S. Khurshid
2 Example

We present an example to illustrate Deryaft’s generation of the representation invariant
of acyclic singly-linked lists. Consider the following class declaration:

public class SinglyLinkedList {
private Node header; // first list node
private int size; // number of nodes in the list

private static class Node {
int elem;
Node next;

}

A list has a header node, which represents the first node of the list, and caches the
number of nodes it contains in the size field. Each node has an integer element elem
and a next field, which points to the next node in the list.

Assume that the class SinglyLinkedList implements acyclic lists, i.e., there are
no directed cycles in the graph reachable from the header node of any valid list. Fig-
ure [Tl shows a set of three lists, one each with zero, one and three nodes, which are all
acyclic. Given a set of these lists, i.e., a reference to a HashSet containing the three list
objects shown, Deryaft generates the representation invariant shown in Figure 2l

The method repOk performs two traversals over the structure represented by this.
First, repOk checks that the structure is acyclic along the next field. Second, it checks
that the structure has the correct value for the size field. The acyclicity checks that
there is a unique path from header to every reachable node, while the check for size
simply computes the total number of reachable nodes and verifies that number.

To illustrate how Deryaft automates existing analyses, consider enumeration of test
inputs using the Korat framework, which requires the user to provide a repOk and a
bound on input size. To illustrate, given the repOk generated by Deryaft, and a bound
of 5 nodes with integer elements ranging from 1 to 5, Korat takes 1.9 seconds to generate
all 3905 nonisomorphic lists with up to 5 nodes. Using the inputs that Korat enumerates,
any given implementation of the list methods can be tested systematically.

Notice that neither the generation of repOk nor the enumeration of test inputs re-
quired an a priori implementation of any method of the class SinglyLinkedList. In-
deed once such methods are written, they can be checked using a variety of frameworks

size: 0 size: 1 size: 3

]
header header

NJo] (N[f =N e

Fig. 1. Three acyclic singly-linked lists, one each containing zero, one, and three nodes, as indi-
cated by the value of the size field. Small hollow squares represent the list objects. The labeled
arrows represent the fields header and next. No, N1, N2, and N3 represent the identities of
node objects. The nodes also contain the integer elements, which for the given three lists range
over the set {-1, 0, 1}.

Generating Representation Invariants of Structurally Complex Data 37

public boolean repOk() {
if (lacyclicCore(header)) return false;
if (!sizeOk(size, header)) return false;
return true;

}

private boolean acyclicCore(Node n) {
Set<Node> visited = new HashSet<Node> () ;
LinkedList<Node> worklist = new LinkedList<Node> () ;
if (n != null) {
worklist.addFirst (n);
visited.add(n) ;
}

while (!worklist.isEmpty()) {
Node current = worklist.removeFirst();
if (current.next != null) {
if (!visited.add(current.next)) {

//re-visiting a previously visited node
return false;
}
worklist.addFirst (current.next);
}
}
return true;

}

private boolean sizeOk(int s, Node n) {
Set<Node> visited = new HashSet<Node> () ;
LinkedList<Node> worklist = new LinkedList<Node>() ;
if (n != null) {
worklist.addFirst (n);
visited.add(n) ;

}

while (!worklist.isEmpty()) {
Node current = worklist.removeFirst();
if (current.next != null) {
if (visited.add(current.next)) {

worklist.addFirst (current.next) ;
}
}
}

return (s == visited.size());

Fig. 2. Invariant generated by Deryaft. The method repOk represents the structural invariants of
the given set of list structures. The method acyclicCore uses a standard work-list based graph
traversal algorithm to visit all nodes reachable from n via the field next and returns true if and
only if the structure is free of cycles. The method sizeOk performs a similar traversal to checks
that the number of nodes reachable from n equals s.

that make use of the representation invariants, which traditionally have been provided

by the user but can now be generated using Deryaft.

In case a partial implementation of the class SinglyLinkedList is available,
Deryaft is able to utilize that. For example, assume that we have an implementation
of the instance method ada:

void add(int i) { ... }

which adds the given integer i at the head of the list this. Given add, it is trivial to
automatically synthesize a driver program that repeatedly invokes add to enumerate all
lists within a small bound, e.g., with up to 3 nodes, using the integer elements {-1, 0,
1}. These lists then serve as the set of input structures for Deryaft.

38 M.Z. Malik, A. Pervaiz, and S. Khurshid

3 Deryaft

This section describes Deryaft. We first describe an abstract view of the program heap.
Next, we define core and derived sets. Then, we characterize the invariants that Deryaft
can generate. Finally, we describe how its algorithm works and illustrate it.

3.1 Program Heap as an Edge-Labeled Graph

We take a relational view [14]] of the program heap: we view the heap of a Java program
as an edge-labeled directed graph whose nodes represent objects and whose edges rep-
resent fields. The presence of an edge labeled f from node o to v says that the f field of
the object o points to the object v (or is null) or has the primitive value v. Mathemati-
cally, we treat this graph as a set (the set of nodes) and a collection of relations, one for
each field. We partition the set of nodes according to the declared classes and partition
the set of edges according to the declared fields; we represent null as a special node.
A particular program state is represented by an assignment of values to these sets and
relations. Since we model the heap at the concrete level, there is a straightforward iso-
morphism between program states and assignments of values to the underlying sets and
relations.

To illustrate, recall the class declaration for SinglyLinkedList from Section
The basic model of heap for this example consists of three sets, each corresponding to
a declared class or primitive type:

SinglyLinkedList

Node

int

and four relations, each corresponding to a declared field:

header: SinglyLinkedList x Node
size: SinglyLinkedList x int
elem: Node x int

next: Node x Node

The “size: 3” list from Figure [Tl can be represented using the following assignment
of values to these sets and relations:

SinglyLinkedList = { LO }
Node = { N1, N2, N3 }
int = { -1, 0, 1}

header = { <L0O, NO> }
= { <LO, 3>}
elem = { <N1, 1>, <N2, -1>, <N3, 0> }
= { <N1, N2>, <N2, N3>, <N3, null> }
Deryaft assumes (without loss of generality) that each structure in the given set has
a unique root pointer. Thus, the abstract view of a structure is a rooted edge-labeled
directed graph, and Deryaft focuses on generating properties of such graphs, including

properties that involve reachability, e.g., acyclicity.

3.2 Core and Derived Fields

Deryaft partitions the set of reference fields declared in the classes of objects in the
given structures into two sets: core and derived. For a given set, S, of structures, let F’
be the set of all reference fields.

Generating Representation Invariants of Structurally Complex Data 39

Set coreFields(Set ss) {
// post: result is a set of core fields with respect to the

/7 structures in ss
Set c¢s = allClasses(ss);
Set fs = allReferenceFields(cs);
foreach (Field f in fs)
Set fs’ = fs - f;
boolean isCore = false;
foreach (Structure s in ss) {
if (reachable(s, fs’) != reachable(s, fs)) {
isCore = true;
break;

}
}
if (!isCore) fs = fs’;
}
return fs;

}

Fig. 3. Algorithm to compute a core set. The method allClasses returns the set of all classes
of objects in structures in ss. The method al1lReferenceFields returns the set of all ref-
erence fields declared in classes in cs. The method reachable returns a set of objects reachable
from the root of s via traversals only along the fields in the given set.

Definition 1. A subset C C F is a core set with respect to S if for all structures s € S,
the set of nodes reachable from the root r of s along the fields in C' is the same as the
set of nodes reachable from r along the fields in F.

In other words, a core set preserves reachability in terms of the set of nodes. Indeed, the
set of all fields is itself a core set. We aim to identify a minimal core set, i.e., a core set
with the least number of fields.

To illustrate, the set containing both the reference fields header and next in the
example from SectionP]is a minimal core set with respect to the given set of lists.

Definition 2. For a core set C, the set of fields F' — C' is a derived set.

Since elemin SectionPlis a field of a primitive type, the SinglyLinkedList example
has no fields that are derived.

Our partitioning of reference fields is inspired by the notion of a back-bone in certain
data structures [|19].

Algorithm. The set of core fields can be computed by taking each reference field in
turn and checking whether removing all the edges corresponding to the field from the
graph changes the set of nodes reachable from root. Figure [3| gives the pseudo-code of
an algorithm to compute core fields.

3.3 Properties of Interest

We consider global as well as local properties of rooted edge-labeled directed graphs,
which are likely representatives of structurally complex data. The properties are divided
into various categories as follows.

Global: reachability. Reachability properties include the shape of the structure reach-
able from root along some set of reference fields. The shapes can be acyclic (i.e., there

40 M.Z. Malik, A. Pervaiz, and S. Khurshid

is a unique path from the root to every node), directed-acyclic (i.e., there are no directed
cycles in the graph), circular (i.e., all the graph nodes of a certain type are linked in a
cycle), or arbitrary. Note that any acyclic graph is also directed-acyclic.

To illustrate, the property acyclic(header, {next}), i.e, the structure reachable
from header along the field next is acyclic, holds for all the lists shown in Figure[Il

Global: primitive fields. In reasoning about graphs, the notion of a cardinality of a
set of nodes occurs naturally. We consider properties relating values of integer fields
and cardinalities of sets of reachable objects. For example, the property equals(size,
reachable(header, next).cardinality()) checks whether size is the cardinality of
the set of objects reachable from header following zero or more traversals of next.

Global: path lengths. For non-linear structures, such as trees, we consider properties
that relate lengths of different paths from root. For example, the property balanced rep-
resents that no simple path from the root differs in length from another simple path by
more than one. For binary trees, this property represents a height-balanced tree.

Local: reference fields. In edge-labeled graphs that are not acyclic (along the set of
all fields), local properties that relate different types of edges are likely. To illustrate,
consider a graph where if an edge connects a node n of type /N to a node m of type M,
there is a corresponding edge that connects m to n. We term such properties two-cycles.
For a doubly-linked list, next and previous form a two-cycle.

Another local property on reference fields is whether a particular node always has an
edge of a particular type from it to null.

Local: primitive fields. Another category of local properties pertains to primitive val-
ues. For example, in a binary tree, the value in a node might be greater than the values
in the node’s children. We consider local properties that relate a node’s value to it’s
successors along reference fields.

3.4 Algorithm

Given a set of structures, Deryaft traverses the structures to formulate a set of hypothe-
ses. Next, it checks which of the hypotheses actually hold for the given structures.
Finally, it translates the valid hypotheses into a Java predicate that represents the struc-
tural invariants of the given structures, i.e., it generates a method that takes an input
structure, traverses it, and returns true if and only if the input satisfies the invariants.

To make invariant generation feasible, a key heuristic that Deryaft incorporates to fo-
cus on relevant properties is: hypothesize properties about reachability, such as acyclic-
ity or circularity, only for the fields in the core set; and hypothesize local properties that
relate derived fields and core fields, e.g., whether a derived field forms two-cycles with
some core fields.

Figure@lpresents the Deryaft algorithm using Java-like pseudo-code. To minimize the
number of properties that are checked on the given structures, the checkProperties
does not check a property p if a property g that contradicts p is already known to be true,
e.g., if acyclic holds then circular (for the same set of fields) is not checked.

Generating Representation Invariants of Structurally Complex Data 41

String deryaft (Set structs) {
// post: result is a string representation of a Java method
// that represents the structural invariants of the
// given structures

Set classes = allClasses(structs);
Set fields = allFields(structs);
Set core = coreFields(fields);
Set derived = derivedFields(fields, core);
Set relevantGlobal =

globalProperties(structs, core, classes);
Set relevantLocal =

localProperties (structs, derived, classes);
Set propertiesThatHold =

checkProperties (relevantGlobal, structs);
propertiesThatHold.addAll (

checkProperties (relevantLocal, structs));
simplify (propertiesThatHold) ;
return generateInvariants (propertiesThatHold) ;

Fig. 4. The Deryaft algorithm. The methods allClasses and allFields respectively re-
turn a set of all classes and a set of all fields from the given set of structures. The method
coreFields (derivedFields) returns the set of core (derived) fields. The methods
globalProperties (localProperties) compute sets of relevant global (local) prop-
erties. The method checkProperties returns a subset of given properties, which hold
for all given structures. The method simplify removes redundant constraints. The method
generatelInvariants generates a Java predicate that corresponds to the given properties.

To minimize the number of checks in the generated repOk, the simplify method
removes redundant properties from set of properties that actually hold, e.g., if a graph
is acyclic, there is no need to generate a check for directed-acyclic.

In summary, the algorithm performs the following five key steps:

—Identification of core and derived fields;

—Formulation of global and local properties that are relevant;
—Computation of properties that actually hold;
—Minimization of properties; and

—Generation of Java code that represents properties.

3.5 Illustration: Binary Tree Representation of Heaps

To illustrate the variety of invariants that Deryaft can generate, we next present a case
study on generating invariants of the heap data structure, which is also called a priority
queue [S]. We consider a binary tree representation of heaps.

The following class declares a binary tree with parent pointers:
public class BinaryTree {

Node root; // first node in the tree
int size; // number of nodes in the tree

private static class Node {
Node left;
Node right;
Node parent;
int key;

42 M.Z. Malik, A. Pervaiz, and S. Khurshid

size: 0 size: 1 size: 2 size: 3
U]
?root ?root
N N2
left _fd lefy/ vight
N\ :
Nfo | [N [N |

Fig.5. Four heaps represented using binary trees, one each containing zero, one, two and
three nodes, as indicated by the value of the size field. Small hollow squares represent the
BinaryTree objects. The labeled arrows represent the fields root, left, right. The dotted
arrows with hollow heads represent parent fields, which have not been labeled for clarity. No,
..., N5 represent the identities of node objects. The nodes also contain the integer keys, which
for the given four heaps range over the set {0, 1, 2}.

Consider a binary tree representation of heap, which requires: acyclicity along left
and right; correctness of parent and size; heap property: the key of a node is greater
than any key in a left or right child; and nearly complete binary tree.

Consider the heaps represented in Figure[3l As an example execution of the algorithm
for computing the core fields (Figure[3), consider computing the set with respect to these
structures. The algorithm initially sets fs to {left, right, parent}, i.e., the set that
contains all the fields that represent homogeneous relations. Removing 1eft from the
set changes reachability, e.g., in the case of the structure with three nodes and therefore
left is core; similarly right is core; however, removing parent does not effect the
reachability in any of the given structures and therefore parent is not core.

As an example execution of the deryaft algorithm (Figure H)), consider computing
the representation invariants for the given structures. The formulation of relevant global
properties gives:

—acyclic(root, {left, right})

—directed-acyclic(root, {left, right})

—circular(root, {left, right})

—equals(size, reachable(root, {1eft, right}).cardinality())
—equals(size + 1, reachable(root, {left, right}).cardinality())
—height-dif ference(root, {left, right},)
—nearly-complete(root, {left, right})

The formulation of relevant local properties gives:

—two-cycle(root, parent, left)
—two-cycle(root, parent, right)
—is-null(root, parent)

—{<, <, >, 2}(root, {left})
—{<, <, >, >}Hroot, {right})

Generating Representation Invariants of Structurally Complex Data

public boolean repOk() {
if (lacyclicCore(root)) return false;
if (!sizeOk(size, root)) return false;
if (!nearlyComplete(root)) return false;
if (!parentNull (root)) return false;
if (!parentTwoCycleLeft (root)) return false;
if (!parentTwoCycleRight (root)) return false;
if (!greaterThanLeft (root)) return false;
if (!greaterThanRight (root)) return false;
return true;

}

private boolean parentNull (Node n) {
return (n.parent == null);

}

private boolean parentTwoCycleLeft (Node n) {
Set<Node> visited = new HashSet<Node> () ;
LinkedList<Node> worklist = new LinkedList<Node> () ;
if (n != null) {
worklist.addFirst (n);
visited.add(n) ;

}

while (!worklist.isEmpty()) {
Node current = worklist.removeFirst();
if (current.left != null) {
if (current.left.parent != current) return false;
if (visited.add(current.left)) {

worklist.addFirst (current.left);
}
}
if (current.right != null) {
if (visited.add(current.right)) {
worklist.addFirst (current.right) ;
}
}
}

return true;

Fig. 6. Code snippet of heap invariant generated by Deryaft

The computation of properties that actually hold gives:

—acyclic(root, {left, right})

—directed-acyclic(root, {left, right})

—equals(size, reachable(root, {1eft, right}).cardinality())
—height-dif ference(root, {left,right}, 1)
—nearly-complete(root, {left, right})

—two-cycle(root, parent, left)

—two-cycle(root, parent, right)

—is-null(root, parent)

—{>, >}(xoot, {1eft})

—{>, >}(xoot, {right})

Removal of redundant properties gives:

—acyclic(root, {left, right})
—equals(size, reachable(root, {1eft, right}).cardinality())
—nearly-complete(root, {left, right})

43

44 M.Z. Malik, A. Pervaiz, and S. Khurshid

—two-cycle(root, parent, left)
—two-cycle(root, parent, right)
—is-null(root, parent)
—greater-than(root, {1eft})
—greater-than(root, {right})

Deryaft’s code generation takes these resulting properties and generates Java code,
which performs appropriate traversals to check the properties. Figure [6] gives a code
snippet of Deryaft’s output. The method repOk represents the structural invariants of
the given heaps. It invokes several helper methods to perform several traversals on
the input structure to determine the structure’s validity. The method acyclicCore re-
turns true if and only if the input structure is free of cycles along the fields 1eft and
right. The method parentNull checks that the parent of n is null. The method
parentTwoCycleLeft checks that for each node n, if n has a Left child m, m’s par-
entis n,i.e., parent and left form a two-cycle; parentTwoCycleRight checks that
for each node n, if n has a right child m, m’s parent is n. The method size0Ok checks
the number of nodes reachable from n equals s. The method greaterThanLeft
checks that for any node n, if n has a 1eft child m, n’s key is greater than m’s key;
the method greaterThanRight checks that for any node n, if n has a right child m,
n’s key is greater than m’s key.

4 Experiments

This section describes Deryaft’s generation of structural invariants for seven subjects,
which include some structures library classes as well as a standalone application. For
each subject, we constructed by hand five small representative structures and gave them
as inputs to Deryaft. For all subjects, Deryaft correctly generated all the standard data
structure invariants. The subjects were as follows.

Singly-linked acyclic list. A list object has a header node; each list node has a
next field. Integrity constraint is acyclicity along next.

Ordered list. An ordered list is a singly-linked acyclic list, whose nodes have integer
elements. Integrity constraints are acyclicity and an (ascending or descending) ordering
on the elements.

Doubly-linked circular list. A list object has a header node; each list node has a
next and a previous field. Integrity constraints are circularity along next and the
transpose relation between next and previous. This subject is based on the library
class java.util.LinkedList.

Binary search tree. A binary search tree object has a root node; each node has a
left and a right child node, a parent, and an integer key. Integrity constraints are
acyclicity along 1eft and right, correctness of parent as well as correct ordering of
keys: for each node, its key is larger than any of the keys in the left sub-tree and smaller
than any of the keys in the right-sub tree.

AVL tree. An AVL tree [5] is a height-balanced binary search tree. Integrity con-
straints are the binary search tree constraints as well as the height-balance constraint.

Heap array. Heap arrays provide an array-based implementation of the binary heap
data structure that is also commonly known as a priority queue. A heap has a capacity

Generating Representation Invariants of Structurally Complex Data 45

that is the length of the underlying array and a size that is the number of elements
currently in the heap. For a heap element at index 4, its left child is at index 2+ ¢+ 1 and
the right child is at index 2 * ¢ + 2. Integrity constraints are size <= capacity and
the heap satisfies the max-heap (respectively min-heap) property: an element is larger
(respectively smaller) than both its children.

Intentional name. The Intentional Naming System [1]] (INS) is a service location
system that allows client applications to specify what they are looking for without hav-
ing to know where it may be situated in a dynamic network. A key data structure in
INS is an intentional name—a hierarchical arrangement of attribute-value pairs that
describe service properties. Clients use these names to locate services, while services
use them as advertisements.

An intentional name can be implemented using the class Avpair that has two
Stringfields attribute and value and a Vector<AvVPair> field children. Struc-
tural integrity constraints for AvPair are: (1) attribute and value of the root are null;
(2) the children of a node have unique attributes; and (3) the structure is acyclic along
the children field.

5 Discussion

This section discusses current limitations of Deryaft and future work.

Limitations. Constraint generation using a given set of structures has two limitations.
One, the set may not be representative of the class of desired structures. Two, not all
relevant properties can feasibly be identified, e.g., conjecturing all possible relations
among integer fields is infeasible even using simple arithmetic operators. Deryaft’s cur-
rent generation algorithm therefore, focuses on structural properties which involve ref-
erence fields, which can naturally be viewed as edges in a graph, and simple constraints
on primitive data. In future, we plan to explore more complex relations among primitive
as well as reference fields.

Our Deryaft implementation is under construction. The prototype at this stage can
handle a class of structures similar to the ones illustrated in this paper.

Optimization of Repeated Traversals. The repOk code that Deryaft outputs typically
performs several traversals over a given structure. While an optimization of these tra-
versals might not produce a noticeable speed-up in code generation due to the small
size of given structures, optimizations may be quite important in the context of where
the generated code is to be used. In fact, based on the usage context, very different
optimizations may be necessary.

Consider the case for structure enumeration using a constraint solver. It is well-
known that the performance of constraint solvers, such as propositional satisfiability
(SAT) solvers, depends crucially on the formulation of given invariants—the same holds
for Korat and the Alloy Analyzer [18]]. In fact, repeated traversals which may seemingly
be slow, may actually elicit faster generation.

The case for assertion evaluation is usually different: generated code that minimizes
the number of traversals is likely to improve the time to check the assertion. Thus, it
is natural to extend Deryaft to incorporate information about the context to tune its
generation to the intended use.

46 M.Z. Malik, A. Pervaiz, and S. Khurshid

Introduction of New Invariants. It would be useful to build an extensible invariant
generation system, where new invariants that involve new operators can be plugged into
the invariant generator. This would enable not only focused generation on the particular
domain of interest, but also generation of a wider class of invariants. Such extensibility
requires a language for expressing invariants.

Integration with Other Software Analysis Frameworks. We have given an example
of how Korat can be used for input enumeration using invariants generated by Deryaft.
We plan to fully integrate Deryaft’s algorithm with various existing frameworks.

Static Analysis for Optimizing Generation. While in the presence of a partial imple-
mentation we may not require the user to provide a set of structures, we can use the
implementation in a different way as well: a static analysis of the code, say the method
that adds a node to a heap, can help formulate the likely invariants more accurately.

6 Related Work

Dynamic analyses Our work is inspired by the Daikon invariant detection engine [[7]],
which pioneered the notion of dynamically detecting likely program invariants in the
late 90s and has since been adapted by various other frameworks [12,[11]]. Deryaft dif-
fers from Daikon in three key aspects. First, the model of data structures in Daikon uses
arrays to represent object fields. While this representation allows detecting invariants
of some data structures, it makes it awkward as to how to detect invariants that involve
intricate global properties, such as relating lengths of paths. Deryaft’s view of the heap
as an edge-labeled graph and focus on generic graph properties enables it to directly
capture a whole range of structurally complex data. Second, Deryaft employs specific
heuristics that optimize generation of invariants for data structures, e.g., the distinction
between core and derived fields allows it to preemptively disallow hypothesizing rela-
tions among certain fields. We believe this distinction, if adopted, can optimize Daikon’s
analysis too. Third, Deryaft generates invariants in Java, which can directly be plugged
into a variety of tools, such as the Korat testing framework [4] and the Juzi [15]] repair
framework.

We have conducted some intial experiments to compare the output of Daikon with
Deryaft. Daikon does not seem to generate rich data structure invariants for the subjects
we have presented in this paper. For example, for the SinglyLinkedList class (Sec-
tion[)), using the lists shown in Figure[Il Daikon generates the following class invariant
for SinglyLinkedList:

/+@ invariant this.header.next.next != null; x/

/*@ invariant this.header.next.elem == -1; */

/+@ invariant this.header.elem == 0 || this.header.elem == 1; */
/*@ invariant this.size == 0; =*/

and the following for Node:

/*@ invariant this.next == null; =/
/+@ invariant this.elem == -1 || this.elem == 0 || this.elem == 1; x/

Even using a larger test suite with 100 randomly generated lists using the API methods
of SinglyLinkedList, we were not able to generate more precise invariants with

Generating Representation Invariants of Structurally Complex Data 47

Daikon. We believe that Daikon experts can set its parameters so that it generates a
richer class of invariants.

In previous work [16]], we developed aDeryaft, a tool for assisting Alloy [13]] users
build their Alloy specifications. aDeryaft generates first-order logic formulas that repre-
sent structural invariants of a given set of Alloy instances. This paper extends both the
design and implementation of aDeryaft by (1) supporting all of Java data-types (includ-
ing arrays), which significantly differ from Alloy’s relational basis, (2) extending the
class of invariants supported and (3) evaluating using a wide class of subject structures,
including those from a stand-alone application.

Static analyses Researchers have explored invariant generation using static analyses for
over three decades. There is a wide body of research in the context of generating loop
invariants [946423121]] using recurrence equations, abstract interpretation with widening,
matrix theory for Petri nets, constraint-based techniques etc. Most of these analyses are
limited to relations between primitive variables.

Shape analyses [[10,120L[19,2]] can handle structural constraints using abstract heap
representations, predicate abstraction etc. However, shape analyses typically do not con-
sider rich properties of data values in structures and mostly abstract away from the data.
Moreover, none of the existing shape analyses can feasibly check or detect rich struc-
tural invariants, such as height-balance for binary search trees, which involve complex
properties that relate paths.

Combined dynamic/static analyses Some recent approaches combine static and dy-
namic analyses for inferring API level specifications [22L125]].

Invariant generation has also been used in the context of model checkers to explain
the absence of counterexamples, while focusing on integer variables [24]].

7 Conclusions

Dynamically detecting likely invariants, as pioneered by Daikon, is becoming
immensely popular. In this paper, we focused on generating representation invariants
of structurally complex data, given a small set of concrete structures. We presented
Deryaft, a novel invariant generation algorithm. Deryaft analyzes the key characteristics
of the given structures to formulate local and global properties that the structures have
in common. A key idea in Deryaft is to view the program heap as an edge-labeled graph,
and hence to focus on properties of graphs, including reachability. Deryaft partitions the
set of edges into core and derived sets and hypothesizes different classes of properties
for each set, thereby minimizing the number of hypotheses it needs to validate.

Deryaft generates a Java predicate that represents the properties of given structures,
i.e., it generates a method that takes an input structure, traverses it, and returns true if
and only if the input satisfies the properties. Even though Deryaft does not require an
implementation of any methods that manipulate the given structures, in the presence of
such an implementation, it can generate the invariants without a priori requiring a given
set of structures. The invariants generated by Deryaft enable automation of various
software analyses. We illustrated how the Korat framework can use these invariants to
enumerate inputs for Java programs and to check their correctness.

48

M.Z. Malik, A. Pervaiz, and S. Khurshid

Acknowledgments

We thank the anonymous reviewers and Darko Marinov for useful comments. This work
was funded in part by the Fulbright Program and the NSF Science of Design Program
(award #0438967).

References

1.

10.

11.

12.

13.

14.

15.

16.

William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. In Proc. 17th ACM Symposium on
Operating Systems Principles (SOSP), Kiawah Island, December 1999.

Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate abstraction. In
Proc. 6th International Conference on Verification, Model Checking and Abstract Interpre-
tation, Paris, France, 2005.

Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java Report,
3(7), July 1998.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated testing
based on Java predicates. In Proc. International Symposium on Software Testing and Analysis
(ISSTA), July 2002.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. 5th Annual ACM Symposium on the Principles of Programming Languages
(POPL), Tucson, Arizona, 1978.

Michael D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis, Univer-
sity of Washington Department of Computer Science and Engineering, August 2000.
Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proc. ACM SIGPLAN 2002 Conference
on Programming language design and implementation, 2002.

Steven M. German and Ben Wegbreit. A synthesizer of inductive assertions. IEEE Trans.
Software Eng., 1(1), 1975.

Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In POPL ’96: Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1996.

Neelam Gupta and Zachary V. Heidepriem. A new structural coverage criterion for dynamic
detection of program invariants. In Proc. 18th Conference on Automated Software Engineer-
ing (ASE), San Diego, CA, October 2003.

Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using automatic
anomaly detection. In ICSE ’02: Proceedings of the 24th International Conference on Soft-
ware Engineering, 2002.

Daniel Jackson. Software Abstractions: Logic, Language and Analysis. The MIT Press,
Cambridge, MA, 2006.

Daniel Jackson and Alan Fekete. Lightweight analysis of object interactions. In Proc. Fourth
International Symposium on Theoretical Aspects of Computer Software, Sendai, Japan, Oc-
tober 2001.

Sarfraz Khurshid, Ivan Garcia, and Yuk Lai Suen. Repairing structurally complex data. In
Proc. 12th SPIN Workshop on Software Model Checking, San Francisco, CA, 2005.

Sarfraz Khurshid, Muhammad Zubair Malik, and Engin Uzuncaova. An automated approach
for writing Alloy specifications using instances. In 2nd International Symposium on Lever-
aging Applications of Formal Methods, Verification and Validation, Paphos, Cyprus, 2006.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Generating Representation Invariants of Structurally Complex Data 49

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behav-
ioral interface specification language for Java. Technical Report TR 98-06i, Department of
Computer Science, lowa State University, June 1998.

Darko Marinov, Sarfraz Khurshid, Suhabe Bugrara, Lintao Zhang, and Martin Rinard. Op-
timizations for compiling declarative models into boolean formulas. In 8th Intl. Conference
on Theory and Applications of Satisfiability Testing (SAT), 2005.

Anders Moeller and Michael 1. Schwartzbach. The pointer assertion logic engine. In Proc.
SIGPLAN Conference on Programming Languages Design and Implementation, Snowbird,
UT, June 2001.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problems in
languages with destructive updating. ACM Transactions on Programming Languages and
Systems (TOPLAS), January 1998.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear loop invariant
generation using groebner bases. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2004.

Mana Taghdiri. Inferring specifications to detect errors in code. In Proceedings of the 19th
IEEE International Conference on Automated Software Engineering, Washington, DC, 2004.
Ashish Tiwari, Harald Rue, Hassen Saidi, and Natarajan Shankar. A technique for invariant
generation. In Proc. 7th Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS), London, UK, 2001.

M. Vaziri and G. Holzmann. Automatic detection of invariants in spin. In Proc. SPIN
Workshop on Software Model Checking, November 1998.

John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of object-
oriented component interfaces. In Proc. International Symposium on Software Testing and
Analysis (ISSTA), July 2002.

Multi-objective Model Checking of
Markov Decision Processes

K. Etessami®, M. Kwiatkowska?, M.Y. Vardi®, and M. Yannakakis*

L LFCS, School of Informatics, University of Edinburgh
2 School of Computer Science, Birmingham University
3 Dept. of Computer Science, Rice University
4 Dept. of Computer Science, Columbia University

Abstract. We study and provide efficient algorithms for multi-objective
model checking problems for Markov Decision Processes (MDPs). Given
an MDP, M, and given multiple linear-time (w-regular or LTL) proper-
ties ;, and probabilities r; € [0,1], ¢ = 1,...,k, we ask whether there
exists a strategy o for the controller such that, for all i, the probability
that a trajectory of M controlled by o satisfies ¢; is at least r;. We pro-
vide an algorithm that decides whether there exists such a strategy and if
so produces it, and which runs in time polynomial in the size of the MDP.
Such a strategy may require the use of both randomization and memory.
We also consider more general multi-objective w-regular queries, which
we motivate with an application to assume-guarantee compositional rea-
soning for probabilistic systems.

Note that there can be trade-offs between different properties: satisfy-
ing property 1 with high probability may necessitate satisfying ¢2 with
low probability. Viewing this as a multi-objective optimization problem,
we want information about the “trade-off curve” or Pareto curve for max-
imizing the probabilities of different properties. We show that one can
compute an approximate Pareto curve with respect to a set of w-regular
properties in time polynomial in the size of the MDP.

Our quantitative upper bounds use LP methods. We also study quali-
tative multi-objective model checking problems, and we show that these
can be analysed by purely graph-theoretic methods, even though the
strategies may still require both randomization and memory.

1 Introduction

Markov Decision Processes (MDPs) are standard models for stochastic opti-
mization and for modelling systems with probabilistic and nondeterministic or
controlled behavior (see [Put94), [Var85, [CY95,[CY98]]). In an MDP, at each state,
the controller can choose from among a number of actions, or choose a proba-
bility distribution over actions. Each action at a state determines a probability
distribution on the next state. Fixing an initial state and fixing the controller’s
strategy determines a probability space of infinite runs (trajectories) of the MDP.
For MDPs with a single objective, the controller’s goal is to optimize the value
of an objective function, or payoff, which is a function of the entire trajectory.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 50-65} 2007.
© Springer-Verlag Berlin Heidelberg 2007

Multi-objective Model Checking of Markov Decision Processes 51

OP 5 8 1

Fig.1. An MDP with two objectives, &Py and ¢ Ps, and the associated Pareto curve

Many different objectives have been studied for MDPs, with a wide variety of
applications. In particular, in verification research linear-time model checking of
MDPs has been studied, where the objective is to maximize the probability that
the trajectory satisfies a given w-regular or LTL property ([CY98,[CY95] [Var85]).

In many settings we may not just care about a single property. Rather, we
may have a number of different properties and we may want to know whether we
can simultaneously satisfy all of them with given probabilities. For example, in a
system with a server and two clients, we may want to maximize the probability
for both clients 1 and 2 of the temporal property: “every request issued by client
i eventually receives a response from the server”, i = 1,2. Clearly, there may be
a trade-off. To increase this probability for client 1 we may have to decrease it
for client 2, and vice versa. We thus want to know what are the simultaneously
achievable pairs (p1, p2) of probabilities for the two properties. More specifically,
we will be interested in the “trade-off curve” or Pareto curve. The Pareto curve
is the set of all achievable vectors p = (p1,p2) € [0,1]? such that there does
not exist another achievable vector p’ that dominates p, meaning that p < p’
(coordinate-wise inequality) and p # p'.

Concretely, consider the very simple MDP depicted in Figure[Il Starting at
state s, we can take one of three possible actions {a1,as,as}. Suppose we are
interested in LTL properties & P; and ¢ P,. Thus we want to maximize the prob-
ability of reaching the two distinct vertices labeled by P, and P, respectively.
To maximize the probability of &P, we should take action ap, thus reaching P;
with probability 0.6 and P» with probability 0. To maximize the probability of
<& Py we should take ag, reaching P, with probability 0.8 and P; with probability
0. To maximize the sum total probability of reaching P, or P, we should take
as, reaching both with probability 0.5. Now observe that we can also “mix” these
pure strategies using randomization to obtain any convex combination of these
three value vectors. In the graph on the right in Figure[I] the dotted line plots
the Pareto curve for these two properties.

The Pareto curve P in general contains infinitely many points, and it can be
too costly to compute an exact representation for it (see Section [). Instead of
computing it outright we can try to approzimate it ([PY00]). An e-approximate
Pareto curve is a set of achievable vectors P(e) such that for every achievable

52 K. Etessami et al.

vector r there is some vector ¢ € P(e) which “almost” dominates it, meaning
r < (1+e)t.

In general, given a labeled MDP M, k distinct w-regular properties, @ = (p; |
i=1,...,k), astart state u, and a strategy o, let Pr?(¢;) denote the probability
that starting at w, using strategy o, the trajectory satisfies p;. For a strategy
o, define the vector t7 = (¢7,...,t7), where tJ = Pry (p;), for i =1,..., k. We
say a value vector r € [0, 1]* is achievable for &, if there exists a strategy o such
that ¢t > r.

We provide an algorithm that given MDP M, start state u, properties @,
and rational value vector r € [0, l]k , decides whether r is achievable, and if so
produces a strategy o such that t > r. The algorithm runs in time polynomial
in the size of the MDP. The strategies may require both randomization and
memory. Our algorithm works by first reducing the achievability problem for
multiple w-regular properties to one with multiple reachability objectives, and
then reducing the multi-objective reachability problem to a multi-objective linear
programming problem. We also show that one can compute an e-approximate
Pareto curve for @ in time polynomial in the size of the MDP and in 1/e. To
do this, we use our linear programming characterization for achievability, and
use results from [PY00] on approximating the Pareto curve for multi-objective
linear programming problems.

We also consider more general multi-objective queries. Given a boolean com-
bination B of quantitative predicates of the form Prj, (y;)Ap, where A € {<,>
,<,>,=,#}, and p € [0, 1], a multi-objective query asks whether there exists a
strategy o satisfying B (or whether all strategies o satisfy B). It turns out that
such queries are not really much more expressive than checking achievability.
Namely, checking a fixed query B can be reduced to checking a fixed number
of extended achievability queries, where for some of the coordinates tJ we can
ask for a strict inequality, i.e., that t7 > r;. (In general, however, the number
and size of the extended achievability queries needed may be exponential in the
size of B.) A motivation for allowing general multi-objective queries is to enable
assume-guarantee compositional reasoning for probabilistic systems, as explained
in Section 21

Whereas our algorithms for quantitative problems use LP methods, we also
consider qualitative multi-objective queries. These are queries given by boolean
combinations of predicates of the form Pr{ (p;) Ab, where b € {0,1}. We give an
algorithm using purely graph-theoretic techniques that decides whether there
is a strategy that satisfies a qualitative multi-objective query, and if so pro-
duces such a strategy. The algorithm runs in time polynomial in the size of the
MDP. Even for satisfying qualitative queries the strategy may need to use both
randomization and memory.

In typical applications, the MDP is far larger than the size of the query. Also,
w-regular properties can be presented in many ways, and it was already shown
in [CY95] that the query complexity of model checking MDPs against even a
single LTL property is 2EXPTIME-complete. We remark here that, if properties
are expressed via LTL formulas, then our algorithms run in polynomial time in

Multi-objective Model Checking of Markov Decision Processes 53

the size of the MDP and in 2EXPTIME in the size of the query, for deciding
arbitrary multi-objective queries, where both the MDP and the query are part
of the input. So, the worst-case upper bound is the same as with a single LTL
objective. However, to keep our complexity analysis simple, we focus in this paper
on the model complexity of our algorithms, rather than their query complexity
or combined complexity.

Due to lack of space in the proceedings, many proofs have been omitted.
Please see [EKVYQT| for a fuller version of this paper, containing an appendix
with proofs.

Related work. Model checking of MDPs with a single w-regular objective has
been studied in detail (see [CY98, [CY95] [Var85]). In [CYIS], Courcoubetis and
Yannakakis also considered MDPs with a single objective given by a positive
weighted sum of the probabilities of multiple w-regular properties, and they
showed how to efficiently optimize such objectives for MDPs. They did not con-
sider tradeoffs between multiple w-regular objectives. We employ and build on
techniques developed in [CY9S].

Multi-objective optimization is a subject of intensive study in Operations Re-
search and related fields (see, e.g., [Ehr05, [Cli97]). Approximating the Pareto
curve for general multi-objective optimization problems was considered by Pa-
padimitriou and Yannakakis in [PY00]. Among other results, [PY00] showed that
for multi-objective linear programming (i.e., linear constraints and multiple lin-
ear objectives), one can compute a (polynomial sized) e-approximate Pareto
curve in time polynomial in the size of the LP and in 1/e.

Our work is related to recent work by Chatterjee, Majumdar, and Henzinger
([CMHO6]), who considered MDPs with multiple discounted reward objectives.
They showed that randomized but memoryless strategies suffice for obtaining any
achievable value vector for these objectives, and they reduced the multi-objective
optimization and achievability (what they call Pareto realizability) problems for
MDPs with discounted rewards to multi-objective linear programming. They
were thus able to apply the results of [PY00] in order to approximate the Pareto
curve for this problem. We work in an undiscounted setting, where objectives
can be arbitrary w-regular properties. In our setting, strategies may require both
randomization and memory in order to achieve a given value vector. As described
earlier, our algorithms first reduce multi-objective w-regular problems to multi-
objective reachability problems, and we then solve multi-objective reachability
problems by reducing them to multi-objective LP. For multi-objective reacha-
bilility, we show randomized memoryless strategies do suffice. Our LP methods
for multi-objective reachability are closely related to the LP methods used in
[CMHO6] (and see also, e.g., [Put94], Theorem 6.9.1., where a related result
about discounted MDPs is established). However, in order to establish the re-
sults in our undiscounted setting, even for reachability we have to overcome some
new obstacles that do not arise in the discounted case. In particular, whereas
the “discounted frequencies” used in [CMHOQ6] are always well-defined finite val-
ues under all strategies, the analogous undiscounted frequencies or “expected
number of visits” can in general be infinite for an arbitrary strategy. This forces

54 K. Etessami et al.

us to preprocess the MDPs in such a way that ensures that a certain family of
undiscounted stochastic flow equations has a finite solution which corresponds
to the “expected number of visits” at each state-action pair under a given (mem-
oryless) strategy. It also forces us to give a quite different proof that memoryless
strategies suffice to achieve any achievable vector for multi-objective reachability,
based on the convexity of the memorylessly achievable set.

Multi-objective MDPs have also been studied extensively in the OR and sto-
chastic control literature (see e.g. [Fur80, [Whi82 [Hen83, [Gho90, WT98]). Much
of this work is typically concerned with discounted reward or long-run average
reward models, and does not focus on the complexity of algorithms. None of this
work seems to directly imply even our result that for multiple reachability objec-
tives checking achievability of a value vector can be decided in polynomial time,
not to mention the more general results for multi-objective model checking.

2 Basics and Background

A finite-state MDP M = (V, I, 6) consists of a finite set V' of states, an action
alphabet I', and a transition relation 6. Associated with each state v is a set
of enabled actions I, C I'. The transition relation is given by 6 C V x I" x
[0,1] x V. For each state v € V, each enabled action a € I',, and every state
v" € V, we have exactly one transition (v, 7, p(y,~,0), ") € 6, for some probability
Doy € 10,1], such that Y7, .\, Prv,y,0) = 1. Thus, at each state, each enabled
action determines a probability distribution on the next state. There are no other
transitions, so no transtitions on disabled actions. We assume every state v has
some enabled action, i.e., I, # (), so there are no dead ends. For our complexity
analysis, we assume of course that all probabilities p(, -,/ are rational. A labeled
MDP M = (V,I,6,1) has, in addition a set of propositional predicates @ =
{Q1,...,Q,} which label the states. We view this as being given by a labelling
function [: V +— X, where ¥ = 29. There are other ways to present MDPs,
e.g., by separating controlled and probabilistic nodes into distinct states. The
different presentations are equivalent and efficiently translatable to each other.
For a labeled MDP M = (V,I6,1) with a given initial state u € V, which we
denote by M, runs of M, are infinite sequences of states m = mom ... € V¥,
where mp = w and for alli > 0, m; € V and there is a transition (m;, 7y, p, Tit+1) € 6,
for some v € I';, and some probability p > 0. Each run induces an w-word over
X, namely I(7) = I(mo)l(m1) ... € X%,

A strategy is a function o : (VI')*V +— D(I"), which maps a finite history
of play to a probability distribution on the next action. Here D(I") denotes the
set of probability distributions on the set I'. Moreover, it must be the case that
for all histories wu, o(wu) € D(I3,), i.e., the probabilty distribution has support
only over the actions available at state u. A strategy is pure if o(wu) has support
on exactly one action, i.e., with probability 1 a single action is played at every
history. A strategy is memoryless (stationary) if the strategy depends only on
the last state, i.e., if o(wu) = o(w'u) for all w,w’ € (VI')*. If ¢ is memoryless,
we can simply define it as a function o : V — D(I"). An MDP M with initial

Multi-objective Model Checking of Markov Decision Processes 55

state u, together with a strategy o, naturally induces a Markov chain M, whose
states are the histories of play in M,,, and such that from state s = wv if y € I,
there is a transition to state s’ = wvyv’ with probability o(wv)(Y) - Py v,y A
run 6 in M7 is thus given by a sequence 6 = 6y6; ..., where 6y = u and each
0; € (VI')*V, for all i > 0. We associate to each history §; = wv the label of its
last state v. In other words, we overload the notation and define I(wv) = I(v).
We likewise associate with each run 6 the w-word 1(6) = 1(60)l(0;) Suppose
we are given ¢, an LTL formula or Biichi automaton, or any other formalism
for expressing an w-regular language over alphabet Y. Let L(p) C X denote
the language expressed by . We write Pr?(¢) to denote the probability that
a trajectory 6 of M7 satistifies ¢, i.e., that [(6) € L(p). For generality, rather
than just allowing an initial vertex v we allow an initial probability distribution
a € D(V). Let Pr? () denote the probability that under strategy o, starting with
initial distribution «, we will satify w-regular property ¢. These probabilities
are well defined because the set of such runs is Borel measurable (see, e.g.,
[Var85, [CY95)).

As in the introduction, for a k-tuple of w-regular properties & = (1, ..., k),
given a strategy o, we let t7 = (¢7,...,t7), with t7 = Pr{ (¢;), fori =1,... k.
For MDP M and starting state u, we define the achievable set of value vectors
with respect to @ to be Uy, ¢ = {r € RY; | 3o such that 7 > r}. For a set

U C R*, we define a subset P C U of it, called the Pareto curve or the Pareto set
of U, consisting of the set of Pareto optimal (or Pareto efficient) vectors inside
U. A vector v € U is called Pareto optimal if -30'(v/ € UAv < v Av #0).
Thus P = {v € U | v is Pareto optimal}. We use Pas, .6 C Un, .0 to denote the
Pareto curve of Uy, ¢.

It is clear, e.g., from Figure[ll that the Pareto curve is in general an infinite set.
In fact, it follows from our results that for general w-regular objectives the Pareto
set is a convex polyhedral set. In principle, we may want to compute some kind
of exact representation of this set by, e.g., enumerating all the vertices (on the
upper envelope) of the polytope that defines the Pareto curve, or enumerating
the facets that define it. It is not possible to do this in polynomial-time in general.
In fact, the following theorem holds (the proof is omitted here):

Theorem 1. There is a family of MDPs, (M(n) | n € N), where M(n) has n
states and size O(n), such that for M(n) the Pareto curve for two reachability
objectives, OP; and OPs, contains n2ogn) yertices (and thus nf2(logn) facets).

So, the Pareto curve is in general a polyhedral surface of superpolynomial size,
and thus cannot be constructed exactly in polynomial time. We show, however,
that the Pareto set can be efficiently approzimated to any desired accuracy € > 0.
An e-approzimate Pareto curve, Py, o(€) C Ung, s, is any achievable set such
that Vr € U, ¢ 3t € Pu,,o(€) such that r < (1 + €)t. When the subscripts M,
and @ are clear from the context, we will drop them and use U, P, and P(¢) to
denote the achievable set, Pareto set, and e-approximate Pareto set, respectively.

We also consider general multi-objective queries. A quantitative predicate over
w-regular property ; is a statement of the form PrJ(¢;)Ap, for some rational
probability p € [0, 1], and where A is a comparison operator A € {<, >, <, >, =}.

56 K. Etessami et al.

Suppose B is a boolean combination over such predicates. Then, given M and
u, and B, we can ask whether there exists a strategy o such that B holds, or
whether B holds for all . Note that since B can be put in DNF form, and
the quantification over strategies pushed into the disjuction, and since w-regular
languages are closed under complementation, any query of the form JoB (or
of the form Vo B) can be transformed to a disjunction (a negated disjunction,
respectively) of queries of the form:

30 NPri(e) = 7o) A AP () > 1) 1)

g J

We call queries of the form (1) extended achievability queries. Thus, if the
multi-objective query is fixed, it suffices to perform a fixed number of extended
achievability queries to decide any multi-objective query. Note, however, that
the number of extended achievability queries we need could be exponential
in the size of B. We do not focus on optimizing query complexity in this
paper.

A motivation for allowing general multi-objective queries is to enable assume-
guarantee compositional reasoning for probabilistic systems. Consider, e.g., a
probabilistic system consisting of the concurrent composition of two components,
M, and M5, where output from M; provides input to My and thus controls M.
We denote this by M; > My. My itself may generate outputs for some external
device, and M7 may also be controlled by external inputs. (One can also consider
symmetric composition, where outputs from both components provide inputs to
both. Here, for simplicity, we restrict ourselves to asymmetric composition where
M controls Ms.) Let M be an MDP with separate input and output action
alphabets 37 and Y5, and let ¢; and ¢y denote w-regular properties over these
two alphabets, respectively. We write (©1)>r, M {p2)>r,, to denote the assertion
that “if the input controller of M satisfies p1 with probability > r1, then the
output generated by M satisfies o with probability > ro”. Using this, we can
formulate a general compositional assume-guarantee proof rule:

(1) >r M1{p2)>r,
(p2)>ry M2{p3)>rs

(P1)>r My > Ma (03)>r,

Thus, to check (¢1)>r, M1 > Ma(ps)>r, it suffices to check two properties of
smaller systems: (¢1)>r, M1{p2)>r, and (p2)>r, Ma(p3)>r,. Note that checking
(p1)>r M {p2)>r, amounts to checking that there does not exist a strategy o
controlling M such that Pry (¢1) > 1 and Prj (p2) < re.

We also consider qualitative multi-objective queries. These are queries re-
stricted so that B contains only qualitative predicates of the form Pr{ (p;)Ab,
where b € {0, 1}. These can, e.g., be used to check qualitative assume-guarantee
conditions of the form: (p1)>1M{p2)>1. It is not hard to see that again, via

Multi-objective Model Checking of Markov Decision Processes 57

a 1
O O
Fig. 2. The MDP M’

boolean manipulations and complementation of automata, we can convert any
qualitative query to a number of queries of the form:

G0 N\ Prile) =) A A (Pro@) > 0)
ped Yew
where @ and ¥ are sets of w-regular properties. It thus suffices to consider only
these qualitative queries.

In the next sections we study how to decide various classes of multi-objective
queries, and how to approximate the Pareto curve for properties @. Let us observe
here a difficulty that we will have to deal with. Namely, in general we will need
both randomization and memory in our strategies in order to satisfy even simple
qualitative multi-objective queries. Consider the MDP, M’, shown in Figure 2
and consider the conjunctive query: B = Prl(OCP;) > 0 A Prd(OCPR,) > 0. It
is not hard to see that starting at state u in M’ any strategy o that satisfies B
must use both memory and randomization. Each predicate in B can be satisfied
in isolation (in fact with probability 1), but with a memoryless or deterministic
strategy if we try to satisfy O< P, with non-zero probability, we will be forced to
satisfy OO P with probability 0. Note, however, that we can satisfy both with
probability > 0 using a strategy that uses both memory and randomness: namely,
upon reaching the state labeled P for the first time, with probability 1/2 we use
move a and with probability 1/2 we use move b. Thereafter, upon encountering
the state labeled P; for the nth time, n > 2, we deterministically pick action a.
This clearly assures that both predicates are satisfied with probability = 1/2 > 0.

3 Multi-objective Reachability

In this section, as a step towards quantitative multi-objective model checking
problems, we study a simpler multi-objective reachability problem. Specifically,
we are given an MDP, M = (V, I, §), a starting state u, and a collection of target
sets F; CV,i=1,...,k. The sets F; may overlap. We have k objectives: the
i-th objective is to maximize the probability of OFj, i.e., of reaching some state
in F;. We assume that the states F = Ule F; are all absorbing states with a
self-loop. In other words, for allv € F, (v,a,1,v) € § and I, = {a}

We first need to do some preprocessing on the MDP, to remove some useless
states. For each state v € V \ F' we can check easily whether there exists a

! The assumption that target states are absorbing is necessary for the proofs in this
section, but it will of course follow from the model checking results in Section [B]
which build on this section, that multi-objective reachability problems for arbitrary
target states can also be handled with the same complexities.

58 K. Etessami et al.

Objectives (i =1,...,k): Maximize ZveFi Yo
Subject to:

Z’yGFU Ywm) — Dwev ZW'EFU, P(o/ v)Y) = a(v) Forallv e V\ F;

Yo — Zu’EV\F Z'y’erv, P’ v)Y (' v =0 For all v € F}
Yo >0 For all v € F;
Y(v,) >0 Forallv e V\ F and «y € I'y;

Fig. 3. Multi-objective LP for the multi-objective MDP reachability problem

strategy o such that PrZ(OF) > 0: this just amounts to whether there exists a
path from v to F in the underlying graph of the MDP. Let us call a state that
does not satisfy this property a bad state. Clearly, for the purposes of optimizing
reachability objectives, we can look for and remove all bad states from an MDP.
Thus, it is safe to assume that bad states do not exist 8 Let us call an MDP with
goal states F' cleaned-up if it does not contain any bad states.

Proposition 1. For a cleaned-up MDP, an initial distribution o € D(V \ F),
and a vector of probabilities r € [0,1]%, there exists a (memoryless) strategy

o such that /\f:1 Pro(OF;) > r; if and only if there exists a (respectively,
memoryless) strategy o’ such that /\ifc:1 Prg/(QFi) >ri N Npev Prg/(QF) > 0.

Now, consider the multi-objective LP described in Figurelf{lﬁ The set of variables
in this LP are as follows: for each v € F, there is a variable y,, and for each
v €V \ F and each v € I', there is a variable y, -).

Theorem 2. Suppose we are given a cleaned-up MDP, M = (V, I, §) with mul-
tiple target sets F; C V, i1 = 1,...,k, where every target v € F = Ule F;
is an absorbing state. Let o« € D(V \ F) be an initial distribution (in particular
V\F #0). Let r € (0,1]* be a vector of positive probabilities. Then the following
are all equivalent:

(1.) There is a (possibly randomized) memoryless strategy o such that

N (PL(OF;) > 1)

2 Technically, we would need to install a new “dead” absorbing state vgeaa & F,
such that all the probabilities going into states that have been removed now go to
Vdead- For convenience in notation, instead of explicitly adding vgeqqa we treat it as
implicit: we allow that for some states v € V and some action a € I, we have
> ey Pu,yey < 1, and we implicitly assume that there is an “invisible” transition
t0 Vdeaqa With the residual probability, i.e., With p(y.y,vye0s) = 1= 2 urcy Plo,y,0r)- OF
course, Vgeqd Would then be a “bad” state, but we can ignore this implicit state.
We mention without further elaboration that this LP can be derived, using comple-
mentary slackness, from the dual LP of the standard LP for single-objective reach-
ability obtained from Bellman’s optimality equations, whose variables are x,, for
v € V, and whose unique optimal solution is the vector * with z; = max, Pry (CF)
(see, e.g., [Put94l [CY9S]).

Multi-objective Model Checking of Markov Decision Processes 59

(2.) There is a feasible solution y' for the multi-objective LP in Fig.[3 such that
k
/\i:1(zveFi Yy > Ti)

(3.) There is an arbitrary strategy o such that
Ny (PTE(OF,) > 1)

Proof

(1.) = (2.). Since the MDP is cleaned up, by Proposition [Il we can assume
there is a memoryless strategy o such that /\f:1 P2 (CF;) > r; and Yo €V
PrJ(OF) > 0. Consider the square matrix P? whose size is |V \ F| x |V \ F|,
and whose rows and columns are indexed by states in V' \ F'. The (v,v")’th entry
of P7, v 18 the probability that starting in state v we shall in one step end
up in state v’. In other words, Py, =3 cr o(v)(7) - Po,y,0r-

For allv € V\ F, let yzv,w) =D wev\r V) Yoo (P7)3 o (v) (7). In other
words ¥/ v,7) denotes the “expected number of times that, using the strategy o,
starting in the distribution «, we will visit the state v and upon doing so choose
action 7”. We don’t know yet that these are finite values, but assuming they
are, for v € F, let y, = ZU’EV\F Z’Y,EFW p(v’,w’,v)yéu/,wy This completes the
definition of the entire vector 7/’.

Lemma 1. The vectory’ is well defined (i.e., all entries yEU) are finite). More-

over, y' is a feasible solution to the constraints of the LP in Figure[3.

Now we argue that) .y, = Prg(OF;). To see this, note that for v € F,
Y = ZU’EV\F Z'y’EF,U/ p(v’,'y’,v)yév/,'y/) is precisely the “expected number of times
that we will transition into state v for the first time”, starting at distribution a.
The reason we can say “for the first time” is because only the states in V'\ F are
included in the matrix P?. But note that this italicised statement in quotes is
another way to define the probability of eventually reaching state v. This equal-
ity can be establish formally, but we omit the formal algebraic derivation here.
Thus 3, cp ¥, = Pro(OF;) > r;. We are done with (1.) = (2.).

(2.) = (1.). We now wish to show that if ¢ is a feasible solution to the multi-
objective LP such that }_ _p vy > 7 >0, for alli =1,...,k, then there exists
a memoryless strategy o such that /\f:1 Pro(OF;) > r;.

Suppose we have such a solution y”. Let S={veV\F [cr ¥, >0}
Let o be the memoryless strategy, given as follows. For each v € S

y//
o)) = 7,
y'ely Jv,y’

Note that since > yz’v 5 >0 o(v) is a well-defined probability distribution

on the moves at state v € S. For the remaining states v € (V \ F)\ S, let o(v)
be an arbitrary distribution in D(I7%).

Lemma 2. This memoryless strategy o satisfies /\?:1 Pro(OF;) > r;.

60 K. Etessami et al.

Proof. The proof is in [EKVYQT7]. Here we very briefly sketch the argument. We
can think of a feasible solution y” to the LP constraints as defining a “stochastic
flow”, whose “source” is the initial distribution a(v), and whose sinks are F.
By flow conservation, vertices v € V' \ F' that have positive outflow (and thus
positive inflow) must all be reachable from the support of «, and must all reach
F, and can not reach any vertex with zero outflow. The strategy o is obtained
by normalizing the outflow on each action at the states with positive outflow. It
can be shown that, using o, the expected number of times we choose action ~y
at vertex v is again given by y/ Therefore, since transitions into the states

(v,
v € F from V \ F are only crossed once, the constraint defining the value g/
yields y2/ = Pr2 (O{v}). a

This completes the proof that (2.) = (1.).

(3.) & (1.). Clearly (1.) = (3.), so we need to show that (3.) = (1.).

Let U be the set of achievable vectors, i.e., all k-vectors r = {r;...ry) such
that there is a (unrestricted) strategy o such that /\f:1 Pro (OF;) > r;. Let
U® be the analogous set where the strategy o is restricted to be a possibly
randomized but memoryless (stationary) strategy. Clearly, U and U® are both
downward closed, i.e., if r > 7’ and r € U then also 7’ € U, and similarly with
U®. Also, obviously U® C U. We characterized U® in (1.) < (2.), in terms
of a multi-objective LP. Thus, U® is the projection of the feasible space of a
set of linear inequalities (a polyhedral set), namely the set of inequalities in the
variables y given in Fig. Bl and the inequalities) cp y» > 73, i =1,..., k. The
feasible space is a polyhedron in the space indexed by the y variables and the
ri’s, and U® is its projection on the subspace indexed by the r;’s. Since the
projection of a convex set is convex, it follows that U® is convex.

Suppose that there is a point r € U \ U®. Since U® is convex, this implies
that there is a separating hyperplane (see, e.g., [GLS93]) that separates r from
U®, and in fact since U® is downward closed, there is a separating hyperplane
with non-negative coefficients, i.e. there is a non-negative “weight” vector w =
{(wy, ..., w) such that wlr = Zf:l w;r; > w'x for every point « € U®.

Consider now the MDP M with the following undiscounted reward structure.
There is 0 reward for every state, action and transition, except for transitions
to a state v € F from a state in V' \ F; i.e. a reward is produced only once, in
the first transition into a state of F'. The reward for every transition to a state
veFisd> {w; |ie€{l,....,k} & v € F;}. By the definition, the expected
reward of a policy o is Z?:l w; Prd (OF;). From classical MDP theory, we know
that there is a memoryless strategy (in fact even a deterministic one) that max-
imizes the expected reward for this type of reward structure. (Namely, this is a
positive bounded reward case: see, e.g., Theorem 7.2.11 in [Put94].) Therefore,
max{wlz | x € U} = max{wTz | x € U®}, contradicting our assumption that
wl'r > max{wlz | z € U®}. |
Corollary 1. Given an MDP M = (V,I,6), a number of target sets F; C V,

i=1,...,k+ K, such that every state v € F' = Ufilk/ F; is absorbing, and an

ingtial state u (or even initial distribution o € D(V)):

Multi-objective Model Checking of Markov Decision Processes 61

(a.) Given an extended achievability query for reachability, 3o B, where

k k+k'
B= N\(Pr(cF) =r)n N\ (P(OF) > 1)),
i=1 j=k+1

we can in time polynomial in the size of the input, |M|+|B)|, decide whether
do B is satisfiable and if so construct a memoryless strategy that satisfies

it.
(b.) For ¢ > 0, we can compute an e-approzimate Pareto curve P(e) for the
multi-objective reachability problem with objectives OF;, ¢ = 1,...,k, in

time polynomial in |M| and 1/e.

4 Qualitative Multi-objective Model Checking

Theorem 3. Given an MDP M, an initial state u, and a qualitative multi-
objective query B, we can decide whether there exists a strategy o that satisfies
B, and if so construct such a strategy, in time polynomial in |M|, and using only
graph-theoretic methods (in particular, without linear programming).

Proof. (Sketch) By the discussion in Section] it suffices to consider the case
where we are given MDP, M, and two sets of w-regular properties @, ¥, and we
want a strategy o such that

A Pri(e) =1 N\ Pe) >0

ped pew

Assume the properties in @, ¥ are all given by (nondeterministic) Biichi au-
tomata A;. We will use and build on results in [CY98]. In [CY98] (Lemma 4.4,
page 1411) it is shown that we can construct from M and from a collection A;,
i = 1,...,m, of Biichi automata, a new MDP M’ (a refinement of M) which
is the “product” of M with the naive determinization of all the A;’s (i.e., the
result of applying the standard subset construction on each A;, without impos-
ing any acceptance condition)E This MDP M’ has the following properties. For
every subset R of @ UW there is a subset T of corresponding “target states” of
M’ (and we can compute this subset efficiently) that satisfies the following two
conditions:

(I) If a trajectory of M’ hits a state in Tg at some point, then we can apply
from that point on a strategy pgr (which is deterministic but uses memory)
which ensures that the resulting infinite trajectory satisfies all properties
in R almost surely (i.e., with conditional probability 1, conditioned on the
initial prefix that hits Tg).

4 Technically, we have to slightly adapt the constructions of [CY98|, which use the
convention that MDP states are either purely controlled or purely probabilistic, to
the convention used in this paper which combines both control and probabilistic
behavior at each state. But these adaptations are straightforward.

62 K. Etessami et al.

(IT) For every strategy, the set of trajectories that satisfy all properties in R and
do not infinitely often hit some state of Tr has probability 0.

We now outline the algorithm for deciding qualitative multi-objective queries.

1. Construct the MDP M’ from M and from the properties @ and ¥.

2. Compute Ty, and compute for each property ¢; € ¥ the set of states Tk,
where R; = & U {;}

3. If & # (), prune M’ by identifying and removing all “bad” states by applying
the following rules.

(a) All states v that cannot “reach” any state in Ty are “bad” [

(b) If for a state v there is an action vy € I', such that there is a transition
(v,7,p,v") € 6, p> 0, and v’ is bad, then remove v from I,.

(¢) If for some state v, I, = @), then mark v as bad.

Keep applying these rules until no more states can be labelled bad and no

more actions removed for any state.

4. Restrict M’ to the reachable states (from the initial state u) that are not
bad, and restrict their action sets to actions that have not been removed,
and let M" be the resulting MDP.

5. If (M"” = 0 or Fp; € ¥ such that M" does not contain any state of Trg,)

then return No.
Else return Yes.

Correctness proof: In one direction, suppose there is a strategy o such that
Npea Pro(ep) = 1A\, cp Pri(¢) > 0. First, note that there cannot be any finite
prefix of a trajectory under o that hits a state that cannot reach any state in Te.
For, if there was such a path, then all trajectories that start with this prefix go
only finitely often through Te. Hence (by property (II) above) almost all these
trajectories do not satisfy all properties in @, which contradicts the fact that all
these properties have probability 1 under ¢. From the fact that no path under o
hits a state that cannot reach T, it follows by an easy induction that no finite
trajectory under ¢ hits any bad state. That is, under ¢ all trajectories stay in
the sub-MDP M". Since every property 1; € ¥ has probability Pry (1;) > 0 and
almost all trajectories that satisfy 1; and @ must hit a state of Tg, (property
(IT) above), it follows that M" contains some state of Tg, for each 1, € ¥. Thus
the algorithm returns Yes.

In the other direction, suppose that the algorithm returns Yes. First, note
that for all states v of M”, and all enabled actions v € I, in M", all transitions
(v,7,p,v") € 6, p> 0 of M must still be in M" (otherwise, v would have been
removed from I, at some stage using rule 3(b)). On the other hand, some states
may have some missing actions in M". Next, note that all bottom strongly

5 Actually these sets are all computed together: we compute maximal closed compo-
nents of the MDP, determine the properties that each component favors (see Def.
4.1 of [CY98]), and tag each state with the sets for which it is a target state.

5 By “reach”, we mean that starting at the state v = vo, there a sequence of transitions
(vi, ¥, Di, Vit1) € 6, p; > 0, such that v, € T for some n > 0.

Multi-objective Model Checking of Markov Decision Processes 63

connected components (bscc’s) of M” (to be more precise, in the underlying
one-step reachability graph of M"') contain a state of Ty (if @ = () then all states
are in Tg), for otherwise the states in these bsccs would have been eliminated at
some stage using rule 3(a).

Define the following strategy o which works in two phases. In the first phase,
the trajectory stays within M”. At each control state take a random action that
remains in M” out of the state; the probabilities do not matter, we can use any
non-zero probability for all the remaining actions. In addition, at each state,
if the state is in T or it is in T, for some property ¢; € ¥, then with some
nonzero probability the strategy decides to terminate phase 1 and move to phase
2 by switching to the strategy pus or pug, respectively, which it applies from that
point on. (Note: a state may belong to several Tg,’s, in which case each one of
them gets some non-zero probability - the precise value is unimportant.)

We claim that this strategy o meets the desired requirements - it ensures
probability 1 for all properties in @ and positive probability for all properties
in ¥. For each ¢; € ¥, the MDP M" contains some state of Tg,; with nonzero
probability the process will follow a path to that state and then switch to the
strategy pg, from that point on, in which case it will satisfy v; (property (I)
above). Thus, all properties in ¥ are satisfied with positive probability.

As for @ (if @ #), note that with probability 1 the process will switch at
some point to phase 2, because all bscc’s of M” have a state in Tg. When it
switches to phase 2 it applies strategy ug or pg, for some R; = & U {¢;}, hence
in either case it will satisfy all properties of @ with probability 1. ad

5 Quantitative Multi-objective Model Checking

Theorem 4

(1.) Given an MDP M, an initial state u, and a quantitative multi-objective
query B, we can decide whether there exists a strategy o that satisfies B,
and if so construct such a strategy, in time polynomial in |M]|.

(2.) Moreover, given w-regular properties ® = (p1,...,pr), we can construct an
e-approzimate Pareto curve Py, o(€), for the set of achievable probability

us

vectors Upr, & in time polynomial in M and in 1/e.

Proof. (Sketch.) For (1.), by the discussion in Section[2l we only need to consider
extended achievability queries, B = /\ii1 Pro(p;) > ri A /\?:k’—&-l Pry (¢5) > 15,
where k > k' > 0, and for a vector r € (0,1]*. Let @ = (p1,...,¢%). We are
going to reduce this multi-objective problem with objectives @ to the quantitative
multi-objective reachability problem studied in Section [Bl From our reduction,
both (1.) and (2.) will follow, using Corollary [[l As in the proof of Theorem
B we will build on constructions from [CY9§|: form the MDP M’ consisting of
the product of M with the naive determinizations of the automata A; for the
properties ¢; € @. For each subset R C @ we determine the corresponding subset
Tg of target states in M'[

7 Again, we don’t need to compute these sets separately. See Footnote

64 K. Etessami et al.

Construct the following MDP M”. Add to M’ a new absorbing state sg for
each subset R of @. For each state u of M’ and each maximal subset R such that
u € Tr add a new action v to I, and an new transition (u,vg, 1, sg) to §. With
each property ¢; € & we associate the subset of states F; = {sg | ¢; € R}. Let
F=(CF,...,OF). Let u* be the initial state of the product MDP M”, given
by the start state u of M and the start states of all the naively determinized
A;’s. Recall that Uy, ¢ C [0,1]% denotes the achievable set for the properties
@ in M starting at u, and that Uy, denotes the achievable set for F' in M"
starting at u*. ’

Lemma 3. Un,,0 = Uy p. Moreover, from a strategy o that achieves T in
u

Un, &, we can recover a strategy o’ that achieves r in U "o and vice versa.
u

It follows from the Lemma that: there exists a strategy ¢ in M such that
/\f:1 Pro(pi) > ri A /\;‘?:k,+1 Pry (¢;) > r; if and only if there exists a strategy
o’ in M" such that /\f/:1 Pry.(OF;) > ri A /\?:k’-&-l Pry. (CF;) > rj. Moreover,
such strategies can be recovered from each other. Thus (1.) and (2.) follow, using
Corollary [l O

6 Concluding Remarks

We mention that although our quantitative upper bounds use LP methods,
in practice there is a way to combine efficient iterative numerical methods for
MDPs, e.g., based on value iteration, with our results in order to approximate
the Pareto curve for multi-objective model checking. This is because the results
of [PY00] for multi-objective LPs only require a black-box routine that optimizes
(exactly or approximately) positive linear combinations of the LP objectives. We
omit the details of this approach.

An important extension of the applications of our results is to extend the
asymmetric assume-guarantee compositional reasoning rule discussed in Section
to a general compositional framework for probabilistic systems. It is indeed
possible to describe symmetric assume-guarantee rules that allow for general
composition of MDPs. A full treatment of the general compositional frame-
work requires a separate paper, and we plan to expand on this in follow-up
work.

Acknowledgements. We thank the Newton Institute, where we initiated dis-
cussions on the topics of this paper during the Spring 2006 programme on
Logic and Algorithms. Several authors acknowledge support from the following
grants: EPSRC GR/S11107 and EP/D07956X, MRL 2005-04; NSF grants CCR-
9988322, CCR-~0124077, CCR-0311326, and ANI-0216467, BSF grant 9800096,
Texas ATP grant 003604-0058-2003, Guggenheim Fellowship; NSF CCF-04-
30946.

Multi-objective Model Checking of Markov Decision Processes 65

References

[Cli97] J. Climaco, editor. Multicriteria Analysis. Springer-Verlag, 1997.

[CMHO06] K. Chatterjee, R. Majumdar, and T. Henzinger. Markov decision processes
with multiple objectives. In Proc. of 23rd Symp. on Theoretical Aspects of
Computer Science, volume LNCS 3884, pages 325-336, 2006.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic ver-
ification. Journal of the ACM, 42(4):857-907, 1995.

[CY98] C. Courcoubetis and M. Yannakakis. Markov decision processes and reg-
ular events. IEEE Trans. on Automatic Control, 43(10):1399-1418, 1998.

[Ehr05] M. Ehrgott. Multicriteria optimization. Springer-Verlag, 2005.

[EKVY07] K. Etessami, M. Kwiatkowska, M. Vardi, & M. Yannakakis. Multi-
Objective Model Checking of Markov Decision Processes. Fuller version
of this conference paper with proofs. http://homepages.inf.ed.ac.uk/
kousha/homepages/tacas071long. pdf

[Fur80] N. Furukawa. Characterization of optimal policies in vector-valued
Markovian decision processes. Mathematics of Operations Research,
5(2):271-279, 1980.

[Gho90] M. K. Ghosh. Markov decision processes with multiple costs. Oper. Res.
Lett., 9(4):257-260, 1990.

[GLS93] M. Grétschel, L. Lovész, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 2nd edition, 1993.

[Hen83] M. I. Henig. Vector-valued dynamic programming. SIAM J. Control Op-
tim., 21(3):490-499, 1983.

[Put94] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[PYO00] C. Papadimitriou and M. Yannakakis. On the approximability of trade-
offs and optimal access of web sources. In Proc. of 41st IEEE Symp. on
Foundations of Computer Science, pages 86-92, 2000.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proc. of 26th IEEE FOCS, pages 327-338, 1985.

[Whig82] D. J. White. Multi-objective infinite-horizon discounted Markov decision
processes. J. Math. Anal. Appl., 89(2):639-647, 1982.

[WT98] K. Wakuta and K. Togawa. Solution procedures for multi-objective

Markov decision processes. Optimization. A Journal of Mathematical Pro-
gramming and Operations Research, 43(1):29-46, 1998.

PReMo:
An Analyzer for Probabilistic Recursive Models

Dominik Wojtczak and Kousha Etessami

School of Informatics, University of Edinburgh

Abstract. This paper describes PReMo, a tool for analyzing Recursive
Markov Chains, and their controlled/game extensions: (1-exit) Recursive
Markov Decision Processes and Recursive Simple Stochastic Games.

1 Introduction

Recursive Markov Chains (RMCs) [4J5] are a natural abstract model of proba-
bilistic procedural programs and other systems involving recursion and proba-
bility. They are formally equivalent to probabilistic Pushdown Systems (pPDSs)
([23]), and they define a class of infinite-state Markov chains that generalize a
number of well studied stochastic models such as Stochastic Context-Free Gram-
mars (SCFGs) and Multi-Type Branching Processes. In a series of recent papers
([4516l7]), the second author and M. Yannakakis have developed algorithms for
analysis and model checking of RMCs and their controlled and game extensions:
1-exit Recursive Markov Decision Processes (1-RMDPs) and 1-exit Recursive
Simple Stochastic Games (1-RSSGs). These extensions allow modelling of non-
deterministic and interactive behavior.

In this paper we describe PReMo, a software tool for analysing models based
on RMCs, 1-RMDPs, and 1-RSSGs. PReMo allows these models to be speci-
fied in several different input formats, including a simple imperative-style lan-
guage for specifying RMCs and RSSGs, and an input format for SCFGs. For
RMCs/RSSGs, PReMo generates a graphical depiction of the model, useful for
visualizing small models (see Figure[Il. PReMo has implementations of numeri-
cal algorithms for a number of analyses of RMCs and 1-RSSGs. From an RMC,
PReMo generates a corresponding system of nonlinear polynomial equations,
whose Least Fixed Point (LFP) solution gives precisely the termination prob-
abilities for vertex-exit pairs in the RMC. For 1-RSSGs, it generates a system
of nonlinear min-max equations, whose LFP gives the values of the termination
game starting at each vertex. Computation of termination probabilities is a key
ingredient for model checking and other analyses for RMCs and pPDSs ([4I5]2]).
PReMo provides a number of optimized numerical algorithms for computing ter-
mination probabilities. Methods provided include both dense and sparse versions
of a decomposed Newton’s method developed in [4], as well as versions of value
iteration, optimized using nonlinear generalizations of Gauss-Seidel and SOR
techniques. The latter methods also apply to analysis of 1-RSSGs.

In addition to computing termination probabilities, PReMo can compute the
(maximum/minimum/game) ezpected termination time in 1-RMCs, 1-RMDPs,

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 66-[71] 2007.
© Springer-Verlag Berlin Heidelberg 2007

PReMo: An Analyzer for Probabilistic Recursive Models 67

AQ2,2);
B(1,2);

A{
L1CA);
L2(B);
entry 0:
0.5: goto L3; 0.5: call L2(0);
entry 1:
0.3: call L1(0); 0.7: call L1(1);
L1 {
exit 0:
0.8: goto L3; 0.2: call L2(0);
exit 1:
1.0: return 1;

}
L2 {
exit 0:
1.0: goto L3;
exit 1:
1.0: return 0;

}
L3 {

0.5: return 0; 0.5: return 1;
3

L4(A);
entry 0:
0.3: call L4(0); 0.3: call L4(1); 0.4: goto L5;
L4 {
exit 0:
0.5: return 0; 0.5: return 1;
exit 1:
0.5: return 0; 0.5: goto L5;

}
Ls {
0.4: goto L5; 0.6: return 1;

Fig. 1. Source code of an RMC, and its visualization generated by PReMo

and 1-RSSGs. It does so by generating a different monotone system of linear
(min-max) equations, whose LFP is the value of the game where the objectives
of the two players are to maximize/minimize the expected termination time
(these expected times can be infinity). (This analysis extends, to a game set-
ting, the expected reward analysis for pPDSs (equivalently, RMCs) studied in
[3]. The generalization works for 1-RMDPs and 1-RSSGs, which correspond to
controlled/game versions of stateless pPDSs, also known as pBPAs. We do not
explicate the theory behind these game analyses here. It is a modification of
results in [6l7], and will be explicated elsewhere.)

PReMo is implemented entirely in Java, and has the following main compo-
nents: (1) A parsers for text descriptions of RMCs, RSSGs, and SCFGs, using
one of several input formats; (2) A menu-driven GUI (using the Standard Wid-
get Library(SWT)), with an editor for different input formats, and menu choices
for running different analyses with different methods; (3) A graphical depiction
generator for RMCs and RSSGs, which produces output using the dot format.
(4) Optimized solvers: Several solvers are implemented for computation of ter-
mination probabilities/values for RMCs and 1-RSSGs, and also computation of
expected termination times for 1-RMCs, 1-RMDPs, 1-RSSGs. We conducted a
range of experiments. Our experiments indicate very promising potential for sev-
eral methods. In particular, our decomposed Sparse Newton’s method performed
very well on most models we tried, up to quite large sizes. Although these nu-
merical methods appear to work well in practice on most instances, there are no

68 D. Wojtczak and K. Etessami

theoretical guarantees on their performance, and there are many open questions
about the complexity of the underlying computational problems (see [I5I6IT]).

We can see PReMo source code for an RMC, together with a visualization
that PReMo generates for it, in Figure[Il Informally, an RMC consists of several
component Markov Chains (in Fig. [I] these are named A and B) that can call
each other recursively. Each component consists of nodes and boxes with pos-
sible probabilistic transitions between them. Each box is mapped to a specific
component so that every time we reach an entry of this box, we jump to the
corresponding entry of the component it is mapped to. When/if we finally reach
an exit node of that component, we will jump back to a respective exit of the box
that we have entered this component from. This process models, in an obvious
way, function invocation in a probabilistic procedural program. Every potential
function call is represented by a box. Entry nodes represent parameter values
passed to the function, while exit nodes represent returned values. Nodes within
a component represent control states inside the function. Documentation about
the input languages is available on the PReMo web page.

The core numerical computation for all the analyses provided by PReMo in-
volves solving a monotone systems of nonlinear min-max equations. Namely, we
have a vector of variables x = (x1,...,%,), and one equation per variable of
the form x; = P;(x), where P;(x) is a polynomial-min-max expression with ra-
tional coefficients. In vector notation, this system of equations can be denoted
x = P(x). The goal is to find the Least Fixed Point solution, i.e., the least non-
negative solution, q* € RZ, of these equations, which is limy_,o, P*(0). In brief,
the solvers in PReMo work as follows (see [46] for more background). First, we
decompose the equations into SCCs and calculate the solution “bottom-up”,
solving the Bottom SCCs first and plug in the solution as constants in higher
SCCs. To solve each SCC, PReMo provides several methods:

Value iteration: nonlinear Jacobi & Gauss-Seidel. Optimized forms of nonlinear
value iteration have been implemented for computing the LFP of x = P(x).
Jacobi, or basic iteration, just computes x° = 0,x!,x2, ..., where x’ = P(x'~1).
Gauss-Seidel iteration optimizes this slightly: inductively, having computed m?“
for j < i, let xf“ = R(m’f+17 e wffll, xﬁmi&h ..., x%). Successive Overrelax-
ation (SOR) is an “optimistic” modification of Gauss-Seidel, which isn’t guar-
anteed to converge in our case.

Dense and sparse decomposed Newton’s method. Newton’s method attempts to
compute solutions to F(x) = 0. In n-dimensions, it works by iterating x*+1 :=
xF —(F'(x*))"1F(x*) where F'(x) is the Jacobian matrix of partial derivatives of
F. In our case we apply this method for F'(x) = P(x)—x. It was shown in [4] that
if the system is decomposed into SCCs appropriately, convergence to the LFP is
guaranteed, if we start with x° = 0. The expensive task at each step of Newton
is the matrix inversion (F’(x*))~!. Explicit matrix inversion is too expensive
for huge matrices. But this matrix is typically sparse for RMCs, and we can
handle much larger matrices if instead of inverting (F”(x*)) we solve the following
equivalent sparse linear system of equations: (F'(x*))(x**! — x*) = F(x*) to
compute the value of x**! — x* and then add x* to obtain x**'. We used

PReMo: An Analyzer for Probabilistic Recursive Models 69

the solver library MTJ (Matrix Toolkit for Java) and tried various sparse linear
solvers. Our Dense Newton’s method uses LU decomposition to invert (F'(x*)).

Iterative numerical solvers can only converge to within some error to the actual
solution. PReMo provides different mechanisms for users to choose when to stop
the iteration: absolute tolerance, relative tolerance, and a specified number of
iterations. In, e.g., the absolute tolerance mode, the algorithm stops after the
first iteration when the absolute difference in the value for all variables changed
less than a given € > 0. This does not in general guarantee closeness to the actual
solution, but it behaves well in practice.

2 Experimental Results

We ran a wide range of experiments on a Pentium 4 3GHz with 1GB RAM,
running Linux Fedora 5, kernel 2.6.17, using Java 5.0. Please see our fuller report
[9) for more details about our experimental results.

SCFGs generated from the Penn Treebank NLP corpora. We checked the consis-
tency' of a set of large SCFGs, with 10,000 to 50,000 productions, used by
the Natural Language Processing (NLP) group at University of Edinburgh and
derived by them from the Penn Treebank NLP corpora. These SCFGs were
assumed to be consistent by construction. Our most efficient method (Sparse
Newton) solved all these SCFGs in a few seconds (see Table [Il). Two out of
seven SCFGs were (very) inconsistent, namely those derived from the brown
and switchboard corpora of Penn Treebank, with termination probabilities as
low as 0.3 for many nonterminals. This inconsistency was a surprise to our NLP
colleagues, and was subsequently identified by them to be caused by annotation
errors in Penn Treebank itself ([I]). Note that both dense and sparse versions
of decomposed Newton’s method are by far the fastest. Since the largest SCCs
are no bigger than 1000 vertices, dense Newton also worked on these examples.
Most of the time for Newton’s method was in fact taken up by the initialization
phase, for computing all the partial derivatives in entries of the Jacobian F’(x).
We thus optimized the computation of the Jacobian in several ways.

Randomly generated RMCs and 1-RSS5Gs. We tested PReMo on randomly gener-
ated RMCs of different sizes, ranging from 10,000 to 500,000 nodes (variables).
In random large instances, with very high probability most nodes are in one
huge SCC with small diameter (“small world phenomenon”). Dense Newton’s
method did not work at all on these huge SCCs, because inverting such large
matrices is too costly, but both Gauss-Seidel and Sparse Newton did very well.
In particular, Sparse Newton handled instances with 500,000 variables in ~ 45
seconds. For random 1-RSSGs, although we have no Newton’s method available
for 1-RSSGs, value iteration performed well (see [9]).

Quicksort. For expected termination time analyses, we considered a toy model
of randomized Quicksort, using a simple hierarchical 1-RMC. The model has

1 An SCFG is called consistent if starting at all nonterminals in the grammar, a random
derivation terminates, and generates a finite string, with probability 1.

70 D. Wojtczak and K. Etessami

Table 1. Performance results for checking consistency of SCFGs derived from Penn
Treebank. Time is in seconds. In parentheses is the number of iterations for the biggest
SCC. Stopping condition: absolute tolerance ¢ = 107*2. SCFG was declared “consis-
tent” if all nonterminals had termination probability > (1 —10™*). The SCFGs brown
and swbd failed consistency by a wide margin.

name |#prod |max-scc Jacobi Gauss Seidel SOR w=1.05 DNewton SNewton
brown | 22866 X| 448 |312.084(9277) 275.624(7866) diverge 2.106(8) 2.115(9)
lemonde| 32885 v'| 527 (234.715(5995) 30.420(767) diverge 1.556(7) 2.037(7)
negra |29297 v'| 518 | 16.995(610) 4.724(174) 4.201(152) 1.017(6) 0.499(6)
swbhd |47578 X| 1123 |445.120(4778) 19.321(202) 25.654(270) 6.435(6) 3.978(6)
tiger |52184 v'| 1173 | 99.286(1347) 16.073(210) 12.447(166) 5.274(6) 1.871(6)
(7))

(7))

tucbadz| 8932 v/| 293 | 6.894(465) 1.925(133) 6.878(461) 0.477(7) 0.341(7
wsj |31170 v/| 765 |462.378(9787) 68.650(1439) diverge 2.363(7) 3.616(3

= == ==

n components, Q;, i = 1,...,n, corresponding to invocations of Quicksort on
arrays of size i. Component (); takes time i to pivot and split the entries, and
then recurses on the two partitions. This is modeled by transitions of probability
1/(i—1), for each d € {1,...,7 — 1}, to two sequential boxes labeled by Q4 and
@Q;—q- We computed expected termination time for various sizes n. We also tried
letting the pivot be controlled by the minimizer or mazimizer, and we computed
optimal expected running time for such 1-RMDPs, in order to consider best-
case and worst-case running times of Quicksort. As expected, the results fitted
the well-known theoretical analysis of ©(nlogn) and ©(n?) for running times of
randomized /best-case, and worst-case Quicksort, respectively.

3 Future Work

The next important step is to extend the RMC language to allow variables
and conditional branching, i.e., probabilistic Boolean Programs. We are working
toward implementation of a full-fledged linear-time model checker for RMCs.
This is a major challenge because there are very difficult numerical issues that
have to be overcome in order to enable general model checking. PReMo 1.0 is
available at: http://homepages.inf.ed.ac.uk/s0571094/PReMo

Acknowledgements. Thanks to Mihalis Yannakakis: the second author’s work
on analysis of RMCs/RSSGs, on which PReMo is based, is joint work with him.
Thanks to Mark-Jan Neiderhof and Giorgio Satta for pointing us in the direction
of large SCFG libraries used in NLP, and telling us about their own current work
on implementing these methods [§]. Thanks to Amit Dubey and Frank Keller
for providing us SCFGs from their NLP work.

References

1. A. Dubey and F. Keller. personal communication, 2006.
2. J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown au-
tomata. In Proc. LICS’04, 2004.

PReMo: An Analyzer for Probabilistic Recursive Models 71

. J. Esparza, A. Kucera, and R. Mayr. Quantitative Analysis of Probabilistic Push-
down Automata: Expectations and Variances. In Proc. LICS’05, 2005.

. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars,
and monotone systems of nonlinear equations. In Proc. STACS’05, 2005.

. K. Etessami and M. Yannakakis. Algorithmic verification of recursive probabilistic
state machines. In Proc. TACAS’05, 2005.

. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive
stochastic games. In Proc. ICALP’05, 2005.

. K. Etessami and M. Yannakakis. Efficient qualitative analysis of classes of recursive
markov decision processes and simple stochastic games. In Proc. STACS’06, 2006.

. M. J. Neiderhof and G. Satta. Using Newton’s method to compute the partition
function of a PCFG, 2006. unpublished draft manuscript.

. D. Wojtczak and K. Etessami. PReMo: an analyzer for Probabilistic
Recursive Models. Fuller report, with more experimental data.
http://homepages.inf.ed.ac.uk/s0571094/PReMo/tacas07premo-long.pdf

Counterexamples in Probabilistic Model Checking

Tingting Han and Joost-Pieter Katoen

Software Modelling and Verification, RWTH Aachen, Germany
Formal Methods and Tools, University of Twente, The Netherlands
{tingting .han, katoen}@cs.rwth-aachen.de

Abstract. This paper considers algorithms for counterexample generation for
(bounded) probabilistic reachability properties in fully probabilistic systems.
Finding the strongest evidence (i.e, the most probable path) violating a (bounded)
until-formula is shown to be reducible to a single-source (hop-constrained) short-
est path problem. Counterexamples of smallest size that are mostly deviating from
the required probability bound can be computed by adopting (partially new hop-
constrained) k shortest paths algorithms that dynamically determine k.

1 Introduction

A major strength of model checking is the possibility to generate counterexamples in
case a property is violated. The shape of a counterexample depends on the checked for-
mula and the used temporal logic. For logics such as LTL, typically paths through the
model suffice. The violation of linear-time safety properties is indicated by finite path
fragments that end in a “bad” state. Liveness properties, instead, require infinite paths
ending in a cyclic behavior indicating that something “good” will never happen. LTL
model checkers usually incorporate breadth-first search algorithms to generate shorz-
est counterexamples, i.e., paths of minimal length. For branching-time logics such as
CTL, paths may act as counterexample for a subclass of universally quantified formu-
lae, ACTLNLTL, to be exact. To cover a broader spectrum of formulae, though, more
advanced structures such as trees of paths [[L1], proof-like counterexamples [[18]] (for
ACTL\LTL) or annotated paths [26] (for ECTL) are used.

Counterexamples are of utmost importance in model checking: first, and for all, they
provide diagnostic feedback even in cases where only a fragment of the entire model can
be searched. They constitute the key to successful abstraction-refinement techniques
[1O]], and are at the core of obtaining feasible schedules in e.g., timed model check-
ing [8]]. As a result, advanced counterexample generation and analysis techniques have
intensively been investigated, see e.g., [2147113]].

This paper considers the generation of counterexamples in probabilistic model
checking. Probabilistic model checking is a technique to verify system models in which
transitions are equipped with random information. Popular models are discrete- and
continuous-time Markov chains (DTMCs and CTMCs, respectively), and variants
thereof which exhibit nondeterminism. Efficient model-checking algorithms for these
models have been developed, have been implemented in a variety of software tools,
and have been applied to case studies from various application areas ranging from ran-
domized distributed algorithms, computer systems and security protocols to biological

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 72 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Counterexamples in Probabilistic Model Checking 73

systems and quantum computing. The crux of probabilistic model checking is to appro-
priately combine techniques from numerical mathematics and operations research with
standard reachability analysis. In this way, properties such as “the (maximal) probability
to reach a set of goal states by avoiding certain states is at most 0.6” can be automati-
cally checked up to a user-defined precision. Markovian models comprising millions of
states can be checked rather fast.

In probabilistic model checking, however, counterexample generation is almost not
developed; notable exception is the recent heuristic search algorithm for CTMCs and
DTMCs [3l4] that works under the assumption that the model is unknown. Instead, we
consider a setting in which it has already been established that a certain state refutes
a given property. This paper considers algorithms and complexity results for the gen-
eration of counterexamples in probabilistic model checking. The considered setting is
probabilistic CTL [[19]] for discrete-time Markov chains (DTMCs), a model in which all
transitions are equipped with a probability. In this setting, typically there is no single
path but rather a set of paths that indicates why a given property is refuted. We concen-
trate on properties of the form P, (®US"W) where p is a probability and h a (possibly
infinite) bound on the maximal allowed number of steps before reaching a goal (i.e., a
¥-) state. In case state s refutes this formula, the probability of all paths in s satisfying
PUS"T exceeds p. We consider two problems that are aimed to provide useful diag-
nostic feedback for this violation: generating strongest evidences and smallest, most
indicative counterexamples.

Strongest evidences are the most probable paths that satisfy $US<"W. They “con-
tribute” mostly to the property refutation and are thus expected to be informative. For
unbounded until (i.e., h=00), determining strongest evidences is shown to be equivalent
to a standard single-source shortest path (SP) problem; in case & is bounded, we obtain
a special case of the (resource) constrained shortest path (CSP) problem [2] that can be
solved in O(hm) where m is the number of transitions in the DTMC. Alternatively, the
Viterbi algorithm can be used for bounded £ yielding the same time complexity.

Evidently, strongest evidences may not suffice as true counterexamples, as their prob-
ability mass lies (far) below p. As a next step, therefore, we consider the problem of
determining most probable subtrees (rooted at s). Similar to the notion of shortest coun-
terexample in LTL model checking, we consider trees of smallest size that exceed the
probability bound p. Additionally, such trees, of size k, say, are required to maximally
exceed the lower bound, i.e., no subtrees should exist of size at most & that exceed p
to a larger extent. The problem of generating such smallest, most indicative counterex-
amples can be casted as a k shortest paths problem. For unbounded-until formulae (i.e.,
h=00), it is shown that the generation of such smallest counterexamples can be found in
pseudo-polynomial time by adopting k shortest paths algorithms [[15/24]] that compute &
on the fly. For bounded until-formulae, we propose an algorithm based on the recursive
enumeration algorithm of Jiménez and Marzal [20]. The time complexity of this adapted
algorithm is O(hm-+hklog("")), where n is the number of states in the DTMC.

Finally, we show how the algorithms for P, (dUS"¥) can be exploited for gener-
ating strongest evidences and counterexamples for lower bounds on probabilities, i.e.,
Psp(PUShD).

74 T. Han and J.-P. Katoen
2 Preliminaries

DTMCs. Let AP denote a fixed, finite set of atomic propositions ranged over by
a,b,c,.... A (labelled) discrete-time Markov chain (DTMC) is a Kripke structure in
which all transitions are equipped with discrete probabilities such that the sum of out-
going transitions of each state equals one. Formally, DTMC D = (S, P, L) where S is
a finite set of states, P : S x S — [0, 1] is a stochastic matrix, and L : S — 247 isa
labelling function which assigns to each state s € .S the set L(s) of atomic propositions
that are valid in s. A state s in D is called absorbing if P(s, s) = 1. W.l.o.g. we assume
a DTMC to have a unique initial state.

Definition 1 (Paths). Let D = (S, P, L) be a DTMC.

— An infinite path o in D is an infinite sequence so-S1-S2- ... of states such that
P(s;,si41) > 0foralli > 0.
— A finite path in D is a finite prefix of an infinite path.

For state s and finite path 0 = sg-$1- .. .-, with P(s,,s) > 0, let o-s denote the path
obtained by extending o by s. Let || denote the length of the path o, i.e., [sg-$1-...8,| =
n, |so| = 0 and |o| = oo for infinite . For 0 < @ < |o|, o[i] = s; denotes the (i+1)-st
state in 0. Path(s) denotes the set of all infinite paths that start in state s and Pathgy, (s)
denotes the set of all finite paths of s.

A DTMC D enriched with an initial state so induces a probability space. The under-
lying o-algebra from the basic cylinder is induced by the finite paths starting in sg. The
probability measure Pr , (briefly Pr) induced by (D, sq) is the unique measure on this
o-algebra where:

Pr{o € Path(so) | so- 51 .Sy, 18 a prefix of U} H P(si, Sit1)-

0<i<
basic cylinder of the finite path sq-s1- s

1

@ ma} . @y Example 1. Fig. [illustrates a sim-

ple DTMC with initial state s. AP =
{a,b} and L is given through the sub-
sets of AP labelling the states as L(s) =
L(s;) = {a},for1 < i <2, L(t1) =
L(ty) = {b} and L(u) = 0. t is an
absorbing state. 07 = s-u-sa-ti-to is a
1} finite path with Pr{o1} = 0.1 x 0.7 x
03 02 1 0.5 x 0.7 and |o1| = 4, 01[3] = t1.
Fig. 1. An example DTMC 02 = 5:(s2:11)* is an infinite path.

PCTL. Probabilistic computation tree logic (PCTL) [[19] is a probabilistic extension of
CTL in which state-formulae are interpreted over states of a DTMC and path-formulae
are interpreted over paths in a DTMC. The syntax of PCTL is as follows:

Pu=tt|a| P |PAD|Pp(p)

Counterexamples in Probabilistic Model Checking 75

where p € [0, 1] is a probability, < € {<,<,>,>} and ¢ is a path formula defined
according to the following grammar:

¢ == SUS"D | WS P

where h € NU {00} The path formula U S asserts that ¥ is satisfied within h tran-
sitions and that all preceding states satisfy ¢. For h=o0 such path-formulae are standard
(unbounded) until-formulae, whereas in other cases, these are bounded until-formulae.
WS is the weak counterpart of /<" which does not require ¥ to eventually become
true. For the sake of simplicity, we do not consider the next-operator. The temporal
operators <»<" and (JS" are obtained as follows:

Pap(OS'®) = Pap(tUS" @) and Pa,(OS"P) = Poy, (DWS"1F)

Note that ff = —tt. Some example formulae are P 5(aldb) asserting that the proba-
bility of reaching a b-state via an a-path is at most j, and Pxq.001($S?Cerror) stating
that the probability for a system error to occur within 50 steps exceeds 0.001. Dually,
'Pgo_ggg(Dgso_'EW’OI’) states that the probability for no error in the next 50 steps is at
most 0.999.

Semantics. Let DTMC D = (S, P, L). The semantics of PCTL is defined by a satisfac-
tion relation, denoted |=, which is characterized as the least relation over the states in S
(paths in D, respectively) and the state formulae (path formulae) satisfying:

skt iff true skEa iff ae€L(s) skE=-9 iff not(s|= D)
sEPANY iff sE=dands =V s = Pap(p) iff Prob(s,¢) <p

Let Path(s, ¢) denote the set of infinite paths that start in state s and satisfy ¢. Formally,
Path(s,$) = {o € Path(s) | o |= ¢}. Here, Prob(s,¢) = Pr{o | o € Path(s,)}
denotes the probability of Path(s,$). Let o be an infinite path in D. The semantics of
PCTL path formulae is defined as:

o= ®US"T iff Fi < hsuchthatofi] =¥ andVj: 0 < j <i(ofj] = ®)
o= dWShw iff either o = BUS"W or ofi] = @ forall i < h

For finite path o, |= is defined in a similar way by changing the range of i to i <
min{h, |o|}. Let Pathg, (s, ¢) denote the set of finite paths starting in s that fulfill ¢.

The until and weak until operators are closely related. This follows from the follow-
ing equations. For any state s and all PCTL-formulae ¢ and ¥ we have:

Psp(@WS') = Py, (8 A -O)US" (=D A —T))
Pop(USW) = Py, (& A —-D)YWS" (—d A —0))

For the rest of the paper, we explore counterexamples for PCTL formulae of the form
Pep(BUS"F). In Section[7, we will show how to generate counterexamples for formu-
lae of the form P, (SUSID).

76 T. Han and J.-P. Katoen
3 Strongest Evidences and Counterexamples

Let us first consider what a counterexample in our setting actually is. To that end, con-
sider the formula P, (¢), where we denote ¢ = SUS"W (h € {00} U N) for the rest
of the paper. It follows directly from the semantics that:

s ¥ Pgp(@) iff not (Prob(s,¢) <p) iff Pr{o|o € Path(s,$)} > p.

So, P<p(9) is refuted by state s whenever the total probability mass of all ¢-paths
that start in s exceeds p. This indicates that a counterexample for P¢,(¢) is in general
a set of paths starting in s and satisfying ¢. As ¢ is an until-formula whose validity
(regardless of the value of i) can be witnessed by finite state sequences, finite paths do
suffice in counterexamples. A counterexample is defined as follows:

Definition 2 (Counterexample). A counterexample for P, (@) in state s is a set C of
finite paths such that C' C Pathgy, (s, ¢) and Pr(C) > p.

A counterexample for state s is thus a set of finite paths that all start in s. We will not
dwell further upon how to represent this set, being it a finite tree (or dag) rooted at s, or
abounded regular expression (over states), and assume that an abstract representation as
a set suffices. Note that the measurability of counterexamples is ensured by the fact that
they just consist of finite paths; hence, Pr(C') is well-defined. Let C' X, (s, ¢) denote the
set of all counterexamples for P, (¢) in state s. For C' € C X, (s, ¢) and C’s superset
C': C C C' C Pathgy, (s, ¢), it follows that C" € C X, (s, ¢), since Pr(C”") > Pr(C) >
p. That is to say, any extension of a counterexample C' with paths in Pathg, (s, ¢) is a
counterexample.

Definition 3 (Minimal counterexample). C' € C X, (s, ¢) is a minimal counterexam-
ple if |C| < |C'], for any C" € CX, (s, ¢).

Note that what we define as being minimal differs from minimality w.r.t. C. As a coun-
terexample should exceed p, a maximally probable ¢-path is a strong evidence for the
violation of P, (¢). For minimal counterexamples such maximally probable paths are
essential.

Definition 4 (Strongest evidence). A strongest evidence for violating P, () in state
sis afinite path o € Pathgy, (s, ¢) such thatPr{c} > Pr{c’} for any o’ € Pathg, (s, ¢).

Dually, a strongest evidence for violating P, (¢) is a strongest witness for fulfilling
P~p(¢). Evidently, a strongest evidence does not need to be a counterexample as its
probability mass may be (far) below p.

As in conventional model checking, we are not interested in generating arbitrary
counterexamples, but those that are easy to comprehend, and provide a clear evidence
of the refutation of the formula. So, akin to shortest counterexamples for linear-time
logics, we consider the notion of a smallest, most indicative counterexample. Such
counterexamples are required to be succinct, i.e., minimal, allowing easier analysis of
the cause of refutation, and most distinctive, i.e., their probability should mostly exceed
p among all minimal counterexamples.

Counterexamples in Probabilistic Model Checking 77

Definition 5 (Smallest counterexample). C' € C' X, (s, ¢) is a smallest (most indica-
tive) counterexample if it is minimal and Pr(C) = Pr(C") for any minimal counterex-
ample C' € CXp(s, ¢).

The intuition is that a smallest counterexample is mostly deviating from the required
probability bound given that it has the smallest number of paths. Thus, there does not
exist an equally sized counterexample that deviates more from p. Strongest evidences,
minimal counterexamples or smallest counterexamples may not be unique, as paths may
have equal probability. As a result, not every strongest evidence is contained in a mini-
mal (or smallest) counterexample. Whereas minimal counterexamples may not contain
any strongest evidence, any smallest counterexample contains at least one strongest
evidence. Using some standard mathematical results we obtain:

Lemma 1. A smallest counterexample for s = P<,(¢) is finite.

Remark 1 (Finiteness). For until path formulae, smallest counterexamples are always
finite sets of paths if we consider non-strict upper-bounds on the probability, i.e., proba-
bility bounds of the form < p. In case of strict upper-bounds of the form < p, finiteness
of counterexamples is no longer guaranteed as C' for which Pr(C') equals p is a small-
est counterexample, but may contain infinitely many paths. For instance, consider the
following DTMC:

1
((———(D
0 {a

The violation of P.1(<{>a) in state s can only be shown by an infinite set of paths, viz.
all paths that traverse the self-loop at state s arbitrarily often.

Example 2. Consider the DTMC in Fig.[Il for which s violates P1 (alb). Evidences
are, amongst others, 01 = s-s1-t1, 02 = $-S1-S2-t1, 03 = §-S3-t1, 04 = 5-S1-S2-t2, and
05 = s-S2-t2. Their respective probabilities are 0.2, 0.2, 0.15, 0.12 and 0.09. Paths o
and o are strongest evidences. The set C; = {o1,...,05} with Pr(Cy) = 0.76 is a
counterexample, but not a minimal one, as the removal from either o, or o9 also yields
a counterexample. Cy = {01, 092,04} is a minimal but not a smallest counterexample,
as C3 = {01,09,03} is minimal too with Pr(C3) = 0.56 > 0.52 = Pr(C3). C5 is a
smallest counterexample.

In the remainder of the paper, we consider the strongest evidence problem (SE),
that for a given state s with s & P, (¢), determines the strongest evidence for this
violation. Subsequently, we consider the corresponding smallest counterexample prob-
lem (SC). For both cases, we distinguish between until-formulae for which h=o00 (un-
bounded until) and 2 € N (bounded until) as distinctive algorithms are used for these
cases.

4 From a DTMC to a Weighted Digraph

Prior to finding strongest evidences or smallest counterexamples, we modify the DTMC
and turn it into a weighted digraph. Let Sat(®) = {s € S | s = @} for any &. Due to the
bottom-up traversal of the model-checking algorithm over the formula ¢ = PUS"P,
we may assume that Sat(®) and Sat(¥) are known.

78 T. Han and J.-P. Katoen

Step 1: Adapting the DTMC. First, we make all states in the DTMC D = (S, P, L)
that neither satisfy @ nor ¥ absorbing. Then we add an extra state ¢ so that all outgoing
transitions from a ¥-state are replaced by a transition to ¢ with probability 1. State ¢ can
thus only be reached via a W-state. The obtained DTMC D’ = (S’,P’, L') has state
space S U {t} for ¢ ¢ S. The stochastic matrix P’ is defined as follows:

(s,s) =1land P'(s,s") =0fors’ # s if s ¢ Sat(®) U Sat(W) ors =t
(s,t) =1land P'(s,s’) =0fors’ £t if s € Sat(¥)
P'(s,s") =P(s,s') for s’ € Sand P'(s,t) = 0 otherwise

L'(s) = L(s) for s € S and L'(t) = {at;}, where at, ¢ L(s') forany s’ € S, i.e.,
aty uniquely identifies being at state ¢. Remark that all the (—® A —W)-states could be
collapsed into a single state, but this is not further explored here. The time complexity
of this transformation is O(n) where n = |S|. It is evident that the validity of ®US"¥
is not affected by this amendment of the DTMC. By construction, any finite path o-¢
in D’ satisfies (& V ¥)US 1 at, and has the form s¢-...-s;-s;11-t where s; = @ for
0<j<i<h,siy1 = ®;the prefix o (in D) satisfies PUS"¥ where ¢’ and o are
equally probable.

P/
P/

Step 2: Conversion into a weighted digraph. As a second preprocessing step, the
DTMC obtained in the first phase is transformed into a weighted digraph. Recall that a
weighted digraphis a tuple G = (V, E, w) where V is a finite set of vertices, E C V' xV
is a set of edges, and w : E — R is a weighted function.

Definition 6. [Weighted digraph of a DTMC] For DTMC D = (S, P, L), the weighted
digraph Gp = (V, E, w) where:

V=8 and (v,v")€E iff P(v,v')>0 and w(v,v')=log(P(v,v')"1).

Note that w(s,s’) € [0,00) if P(s,s’) > 0. Thus, we indeed obtain a non-negatively
weighted digraph. Note that this transformation can be done in O(m), where m = |P|,
i.e., the number of non-zero elements in P.

A path o from s to ¢ in G is a sequence o = vg-v;-....v; € V1, where vg = s,v; =t
and (v;,v;41) € E, for 0 < i < |o]|. As for paths in DTMCs, |o| denotes the length of
o. The distance of finite path o = vg-v;-...-v; in graph G is d(0) = Z;& w(vi, Vit1).
Due to the fact that multiplication of probabilities in D corresponds to addition of
weights in Gp, and that weights are based on taking the logarithm of the reciprocal
of the transition probabilities in D, distances in G and path-probabilities in DTMC D
are related as follows:

Lemma 2. Let o and o’ be finite paths in DTMC D and its graph Gp. Then:
Pr{c’'} > Pr{c} iff d(o') <d(o).

The correspondence between path probabilities in the DTMC and distances in its
weighted digraph as laid down in the following lemma, constitutes the basis for the
remaining algorithms in this paper.

Lemma 3. For any path o from stot in DTMC D, k > 0, and h € NU {o0}: 0 isa
k-th most probable path of at most h hops in D iff o is a k-th shortest path of at most h
hops in Gp.

Counterexamples in Probabilistic Model Checking 79

5 Finding Strongest Evidences

Unbounded until. Based on the results of Lemma [3] where £k =1 and h = oo, we
consider the well-known shortest path problem. Recall that:

Definition 7 (SP problem). Given a weighted digraph G = (V, E, w) and s,t € V, the
shortest path (SP) problem is to determine a path o from s to t such that d(c) < d(c”’)
for any path o’ from sto t in G.

From Lemma[3|together with the transformation of a DTMC into a weighted digraph, it
follows that there is a polynomial reduction from the SE problem for unbounded until
to the SP problem. As the SP problem is known to be in PTIME, it follows:

Theorem 1. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [[14{912] exist for the SP problem, e.g., when using Dijk-
stra’s algorithm, the SE problem for unbounded until can be solved in time O(m +
nlogn) if appropriate data structures such as Fibonacci heaps are used.

Bounded until. Lemma[3lfor k = 1 and h € N suggests to consider the hop-constrained
SP problem.

Definition 8 (HSP problem). Given a weighted digraph G = (V, E,w), s,t € V and
h € N, the hop-constrained SP (HSP) problem is to determine a path o in G from s to t
with |o| < h such that d(o) < d(o”) for any path ¢’ from s to t with |o’| < h.

The HSP problem is a special case of the constrained shortest path (CSP) problem
[252], where the only constraint is the hop count.

Definition 9 (CSP problem). Given a weighted digraph G = (V, E,w), s,t € V and
resource constraints /\i,for 1 <i< c Edgee € E uses ri(e) > 0 units of resource 1.
The (resource) constrained shortest path problem (CSP) is to determine a shortest path
oinG fromstotsuchthaty, ._ri(e) < N forl<i<ec

eco

The CSP problem is NP-complete, even for a single resource constraint [2]]. However, if
each edge uses a constant unit of that resource (such as the hop count), the CSP problem
can be solved in polynomial time, cf. [17], problem [ND30]. Thus:

Theorem 2. The SE problem for bounded until is in PTIME.

For h > n—1, it is possible to use Dijkstra’s SP algorithm (as for unbounded until),
as a shortest path does not contain cycles. If h < n—1, however, Dijkstra’s algorithm
does not guarantee to obtain a shortest path of at most h hops. We, therefore, adopt the
Bellman-Ford (BF) algorithm [9412] which fits well to our problem as it proceeds by
increasing hop count. It can be readily modified to generate a shortest path within a
given hop count. In the sequel of the paper, this algorithm is generalized for computing
smallest counterexamples. The BF-algorithm is based on a set of recursive equations;
we extend these with the hop count h. For v € V, let 7, (s, v) denote the shortest path
from s to v of at most h hops (if it exists). Then:

s ifv=sandh >0 (la)
mh(s,v) =< L ifv#sandh=0 (1b)
argmin, {d(mp—1(s,u) - v) | (u,v) € E}ifv#sandh >0 (lc)

80 T. Han and J.-P. Katoen

where | denotes nonexistence of such a path. The last clause states that (s, v) con-
sists of the shortest path to v’s predecessor u, i.e., 7,1 (s, u), extended with edge (u, v).
Note that min, {d(mn—1(s,u) - v) | (u,v) € E} is the distance of the shortest path; by
means of arg, the path is obtained. It follows (cf. [22]) that equation (1a)~(1c) charac-
terizes the shortest path from s to v in at most 4 hops, and can be solved in time O(hm).
As h < n—1, this is indeed in PTIME. Recall that for h > n—1, Dijkstra’s algorithm
has a favorable time complexity.

Exploiting the Viterbi algorithm. An alternative to using the BF algorithm is to adopt
the Viterbi algorithm [16l27]]. In fact, to apply this algorithm the transformation into
a weighted digraph is not needed. The Viterbi algorithm is a dynamic programming
algorithm for finding the most likely sequence of hidden states (i.e., a finite path) that
result in a sequence of observed events (a trace), especially in the context of hidden
Markov models. Let D be a DTMC that is obtained after the first step described in Sec-
tiond] and suppose that L(s) contains the set of atomic propositions that are valid in
s and all subformulae of the formula under consideration. (Note that these labels are
known due to the recursive descent nature of the PCTL model checking algorithm.)
Let tr(o) denote the projection of a path 0 = sg-s1-...-S, on its trace, i.e., tr(c) =
L(s0)-L(s1)-...-L(sp). o ; denotes the prefix of path o truncated at length ¢ (thus end-
ing in s;), formally, 0|, = o[0]-0[1]-...-0[i]. Thus, tr(c];) = L(so)-L(s1)...-L(s;).
~1; denotes the prefix of trace v with length i. Let p(v, ¢, v) denote the probability of
the most probable path o |; whose trace equals v ; and reaches state v. p(v, ¢, v) can be
formally defined as follows:

i—1
p(ri,v) = max []P(sj,s8501) - Lo(sa),
tr(gli):'ﬁ =0

where 1,,(s;) is the characteristic function of v, i.e., 1,(s;) returns 1, if s; = v, and 0
otherwise. The Viterbi algorithm provides an algorithmic solution to compute p(7y, ¢, v):

1 ifs=wvandi=0
p(v,4,v) =14 0 ifs#vandi=0
maxyes p(7,i — 1,u) - P(u,v) otherwise

By computing p(®"W, h, s3,), the Viterbi algorithm determines the most probable h-
hop path & = s¢-51-...-s;, that generates the trace v = L'(so)L'(s1)...L' (s3,) = ®"W¥
with length (h+1). Here, L'(s) = L(s) N {®,¥}, i.e., L is the labelling restricted to
the subformulae ¢ and ¥. For our SE problem for bounded until, the trace of the most
probable hop-constrained path from s to ¢ is among {Wat;, ®¥ aty, ..., ®"Wat,}. The
self-loop at vertex ¢ with probability one ensures that all these paths have length h+1
while not changing their probabilities. For instance, the path with trace #'W¥ at, can be
extended so that the trace becomes ®'Wat,"1~% where i < h. Since the DTMC is
already transformed as in Step 1, we can obtain the most probable path for U< by
computing p((®V¥Vat,)"ats, h+1,t) using the Viterbi algorithm. The time com-
plexity is O(hm), as for the BF algorithm.

Counterexamples in Probabilistic Model Checking 81

6 Finding Smallest Counterexamples

Recall that a smallest (most indicative) counterexample is a minimal counterexample,
whose probability—among all minimal counterexamples—deviates maximally from
the required probability bound. In this section, we investigate algorithms and com-
plexity bounds for computing such smallest counterexamples. First observe that any
smallest counterexample that contains, say k paths, contains the k£ most probable paths.
This follows from the fact that any non-%k most probable path can be exchanged with a
more probable path, without changing the size of the counterexample, but by increasing
its probability.

Unbounded until. Lemma[3is applicable here for £ > 1 and h = oc. This suggests to
consider the k shortest paths problem.

Definition 10 (KSP problem). Given a weighted digraph G = (V, E,w), s,t € V,
and k € N, the k shortest paths (KSP) problem is to find k distinct shortest paths
between s and t in G, if such paths exist.

Theorem 3. The SC problem for unbounded until is a KSP problem.

Proof. We prove that a smallest counterexample of size k, contains & most probable
paths. It is proven by contradiction. Let C' be a smallest counterexample for ¢ with
|C| = k, and assume C does not contain the k£ most probable paths satisfying ¢. Then
there is a path o ¢ C satisfying ¢ such that Pr{c} > Pr{c’} for some ¢’ € C. Let
C" = C\ {0’} U{o}. Then C’ is a counterexample for ¢, |C| = |C’| and Pr(C) >
Pr(C"). This contradicts C' being a smallest counterexample. |

The question remains how to obtain k. Various algorithms for the KSP problem require
k to be known a priori. This is inapplicable in our setting, as the number of paths in a
smallest counterexample is implicitly provided by the probability bound in the PCTL-
formula and is not known in advance. We therefore consider algorithms that allow to
determine k on the fly, i.e., that can halt at any k& and resume if necessary. A good
candidate is Eppstein’s algorithm [15]. Although this algorithm has the best known
asymptotic time complexity, viz. O(m+n logn+k), in practice the recursive enumera-
tion algorithm (REA) by Jiménez and Marzal [20] prevails. This algorithm has a time
complexity in O(m+knlog ™) and is based on a generalization of the recursive equa-
tions for the BF-algorithm. Besides, it is readily adaptable to the case for bounded h,
as we demonstrate below. Note that the time complexity of all known KSP algorithms
depends on k, and as k may be exponential, their complexity is pseudo-polynomial.

Bounded until. Similar to the bounded until case for strongest evidences, we now con-
sider the KSP problem where the path length is constrained, cf. Lemma[3] for » € N.

Definition 11 (HKSP problem). Given a weighted digraph G = (V, E,w), s,t € V
and h,k € N, the hop-constrained KSP (HKSP) problem is to determine k shortest
paths each of length at most h between s and t.

Similar to Theorem[3 we obtain:

Theorem 4. The SC problem for bounded until is a HKSP problem.

82 T. Han and J.-P. Katoen

To our knowledge, algorithms for the HKSP problem do not exist. In order to solve
the HKSP problem, we propose a new algorithm that is strongly based on Jiménez and
Marzal’s REA algorithm [20]. The advantage of adapting this algorithm is that k& can
be determined on the fly, an essential characteristic for our setting. The algorithm is a
conservative extension of the REA algorithm.

For v € V, let 7f(s,v) denote the k-th shortest path from s to v of length at most
h (if it exists). As before, we use L to denote the non-existence of a path. We establish
the following equations:

s ifk=1,v=sandh >0 (2a)
mh(s,v) ={ L if (k> 1,v=sh=0)or (v+#s,h=0) (2b)
arg ming{d(c) | o € QF(s,v)} otherwise (2¢)

where Q¥ (s, v) is a set of candidate paths among which 7F (s, v) is chosen. The candi-
date sets are defined by:

{mh1(s,0)v | (u,v) € B}
ifk=1v#sork=2v=s
Qh(s,0) =14 (@ (5,0) = {mf_ (s,w)-0}) U {mp ' (s, u)-0} (3)
if £ > 1 and u, k' are the node and index,
such that 7871 (s,v) = 7F | (s,u)v

Path TK’ZI_JEI(S, u)-v = L occurs when QZ'_*f(s?u) = (). Note that L-v = _L for any
v € V. Qk(s,v) = 0if it only contains L.

If k=1, the shortest path to v’s predecessor u is extended with the edge to v. In the
latter clause, 7, (s,u) denotes the selected (k—1)-st shortest path from s to u, where
u is the direct predecessor of v. Paths in Q% (s,v) for k& > 1 are thus either candidate
paths for k—1 where the selected path is eliminated (first summand) or the (k'+1)-st
shortest path from s to u extended with edge (u,v) (second summand). Note that for
the source state s, there is no need to define Q¥ (s, s) as 7 (s, s) is defined by equations
(2a) and (2b), which act as termination conditions. In a similar way as in [20] it can be
proven that:

Lemma 4. The equations (2a)-(2¢) and (3) characterize the hop-constrained k short-
est paths from s to v in at most h hops.

The adapted REA. The adapted REA for computing the % shortest paths from s to ¢
which each consist of at most h hops is sketched as follows. The algorithm is based on
the recursive equations given just above.

(i) Compute 7} (s,t) by the BF algorithm and set k := 1.

k
(ii) Repeat until ZPr{ﬂ'i(s,t)} > p
i=1
(a) Set k := k+1 and compute 7 (s, t) by invoking NextPath(v, h, k).

For k>1, and once 7} (s,v), ..., 7 (s, v) are available, NextPath(t, h, k) computes

7 (s,v) as follows:

Counterexamples in Probabilistic Model Checking 83

—

If h<0, goto step 4.
2. If k=2, thenset Q[v, h|:={7} _,(s,u)v | (u,v)€E and 7} (s,v) #m}_,(s,u)-v}.
3. Let u and &’ be the node and index such that 7~ (s, v) = 7| (s, u)-v.
(a) If W}’i/fll (s,u) has not yet been computed, invoke NextPath(u, h—1,k'+1).
(b) If 7Tk/j_11(8, u) exists, then insert w’;/fll(s, u)-vin Q[v, h).
4. If Qlv, ;LL] # (), then select and delete a path with minimum weight from Q[v,]
and assign it to 75 (s, v), else 7 (s, v) does not exist.

In the main program, first the shortest path from s to ¢ is determined using, e.g., the
BF-algorithm. The intermediate results are recorded. Then, the & shortest paths are
determined iteratively using the subroutine NextPath. The computation terminates when
the total probability mass of the k shortest paths so far exceeds the bound p. Recall that
p is the upper bound of the PCTL formula to be checked. Note that Q[v, h] in the
algorithm corresponds to Qﬁ(s, v), where k is the parameter of the program. In steps 2
through 3, the set QF (s, v) is determined from Q;~* (s, v) according to equation (3). In
the final step, 7F (s, v) is selected from Q¥ (s, v) according to equation (2¢).

To determine the computational complexity of the algorithm, we assume the candi-
date sets to be implemented by heaps (as in [20]). The k shortest paths to a vertex v
can be stored in a linked list, where each path 7% (s,v) = 7" | (s,u)-v is compactly
represented by its length and a back pointer to 7T}k£,_1 (s,u). Using these data structures,
we obtain:

Theorem 5. The time complexity of the adapted REA is O(hm + hklog("")).

Note that the time complexity is pseudo-polynomial due to the dependence on k£ which
may be exponential in n. As in our setting, & is not known in advance, this can not be
reduced to a polynomial time complexity.

7 Lower Bounds on Probabilities

For the violation of PCTL formulae with lower bounds, i.e., s F= P, (PU ghLD), the for-
mula and model will be changed so that the algorithms for finding strongest evidences
and smallest counterexamples for PCTL can be applied.

Unbounded until. For h = oo, we have:
P=p (@L{ LD) Elpglfp((@ AN —.Q) w (—'QS AN _‘Lpl) E’Pg17p((@ A ﬁ@l“(atu \ atb))7

N~ C - N~

P+ o+ o+
where at,, and at, are two new atomic propositions such that (i) s = at,, iff s = &*
(ii) s = aty iff s € B where B is a bottom strongly connected component (BSCC) such
that B C Sat(P*), or shortly s € Bg+«. A BSCC B is a maximal strong component that
has no transitions that leave B.

Algorithmically, the DTMC is first transformed such that all the (—®* A —W*)-states
are made absorbing. Note that once those states are reached, @*VW¥* will never be
satisfied. As a second step, all the ¥*-states are labelled with at,, and made absorbing.
Finally, all BSCCs are obtained and all states in B~ are labelled with at;. The obtained
DTMC now acts as the starting point for applying all the model transformations and
algorithms in SectiondH6lto generate a counterexample for P<q—, (P*U (at,, V aty)).

84 T. Han and J.-P. Katoen

Bounded until. For h € N, identifying all states in BSCC Bg- is not sufficient, as a
path satisfying [JS&* may never reach such BSCC. Instead, we transform the DTMC
and use:

Pop(@UST) = Py, (& A —~0)UT"(at,, V atp)),
~ ~ -~

where at,, and at;, are new atomic propositions such that at,, is labelled as before and
s' = aty, iff there exists o € Path gy, (s) such that o[h] = s’ and o | OS"@*.

Algorithmically, the (—=®* A —W*)-states and ¥*-states are made absorbing; be-
sides, all ¥*-states are labelled with at,. As a second step, all the ¢*-states that can
be reached in exactly h hops are computed by e.g., a breadth first search (BFS) al-
gorithm. The obtained DTMC now acts as the starting point for applying all the model
transformations and algorithms in Section to generate a counterexample for
P<1—p(P*UT"(at, V aty)). Finite paths of exactly h paths suffice to check the va-
lidity of o |= OS"®*, thus *U~"at, (not &*US"aty,) is needed; besides the validity
is unaffected if we change $US"at,, into PU"at,,, since all at,, states are absorbing.
Note that it is very easy to adapt the strongest evidences and smallest counterexamples
algorithms for /" to those for /=" — only the termination conditions need a slight
change. The time complexity remains the same.

In the above explained way, counterexamples for (bounded) until-formulae with
a lower bound on their probability are obtained by considering formulae on slightly
adapted DTMCs with upper bounds on probabilities. Intuitively, the fact that s refutes
P>, (PUShP) is witnessed by showing that violating paths of s are too probable, i.e.,
carry more probability mass than p. Alternatively, all paths starting in s that satisfy
PUS"T could be determined as this set of paths has a probability less than p.

8 Conclusion

Summary of results. We have investigated the computation of strongest evidences (max-
imally probable paths) and smallest counterexamples for PCTL model checking of
DTMC:s. Relationships to various kinds of shortest path problems have been estab-
lished. Besides, it is shown that for the hop-constrained strongest evidence problem,
the Viterbi algorithm can be applied. Summarizing we have obtained the following
connections and complexities:

courll)trczrslxefglnple Shgﬁ)?lteﬁlth algorithm time complexity
SE (until) SP Dijkstra O(m+nlogn)
SE (bounded until) HSP BF/Viterbi O(hm)
SC (until) KSP Eppstein O(m +nlogn + k)
SC (bounded until) HKSP adapted REA O(hm + hklog(™))

where n and m are the number of states and transitions, & is the hop bound, and k is the
number of shortest paths.

Counterexamples in Probabilistic Model Checking 85

Extensions. The results reported in this paper can be extended to (weak) until-formulae
with minimal or interval bounds on the number of allowed steps. For instance, strongest
evidences for s }= P, (DU (h:1'1@) with 0 < h < K can be obtained by appropriately
combining maximally probable paths from s to states at distance i from s, and from
those states to W-states. Similar reasoning applies to the SC problem. For DTMCs
with rewards, it can be established that the SE problem for violating reward- and hop-
bounded until-formulae boils down to solving a non-trivial instance of the CSP problem.
As this problem is NP-complete, efficient algorithms for finding counterexamples for
PRCTL [5], a reward extension to PCTL, will be hard to obtain.

Further research. Topics for further research are: succinct representation and visual-
ization of counterexamples, experimental research of the proposed algorithms in prob-
abilistic model checking and considering loopless paths (see e.g., [23]).

Related work. The SE problem for timed reachability in CTMCs is considered in [3]].
Whereas we consider the generation of strongest evidences once a property violation
has been established, [3]] assumes the CTMC to be unknown. The SE problem for
CTMCs is mapped onto an SE problem on (uniformised) DTMCs, and heuristic search
algorithms (Z*) are employed to determine the evidences. The approach is restricted
to bounded until and due to the use of heuristics, time complexities are hard to obtain.
In our view, the main advantage of our approach is the systematic characterization of
generating counterexamples in terms of shortest path problems. Recently, [4] general-
izes the heuristic approach to obtain failure subgraphs, i.e., counterexamples. To our
knowledge, smallest counterexamples have not been considered yet.

Acknowledgement. Christel Baier and David N. Jansen are kindly acknow-
ledged for their useful remarks on the paper. This research has been financially
supported by the NWO project QUPES and by 973 and 863 Program of China
(2002CB3120022005AA113160, 2004AA112090, 2005AA113030) and NSFC
(60233010, 60273034, 60403014).

References

1. A.V. Aho, J.E. Hopcroft and J.D. Ullmann. The design and analysis of computer algorithms.
Addison-Wesley, 1974.

2. R.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network Flows: Theory, Algorithms and Applica-
tions, Prentice Hall, Inc., 1993.

3. H. Aljazzar, H. Hermanns and S. Leue. Counterexamples for timed probabilistic reachability.
FORMATS 2005, LNCS 3829: 177-195, 2005.

4. H. Aljazzar and S. Leue. Extended directed search for probabilistic timed reachability. FOR-
MATS 2006, LNCS 4202: 33-51, 2006.

5. S. Andova, H. Hermanns and J.-P. Katoen. Discrete-time rewards model-checked. FOR-
MATS 2003, LNCS 2791: 88-104, 2003.

6. C. Baier, J.-P. Katoen, H. Hermanns and V. Wolf. Comparative branching-time semantics for
Markov chains. Inf. Comput. 200(2): 149-214 (2005).

7. T. Ball, M. Naik and S. K. Rajamani. From symptom to cause: localizing errors in counterex-
ample traces. POPL: 97-105, 2003.

86

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

T. Han and J.-P. Katoen

G. Behrmann, K. G. Larsen and J. I. Rasmussen. Optimal scheduling using priced timed
automata. ACM SIGMETRICS Perf. Ev. Review 32(4): 34-40 (2005).

R. Bellman. On a routing problem. Quarterly of Appl. Math., 16(1): 87-90 (1958).

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith: Counterexample-guided abstraction
refinement. CAV, LNCS 1855: 154-169, 2000.

E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like counterexamples in model checking. LICS:
19-29 (2002).

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algorithms, 2001.
Section 24.1: The Bellman-Ford algorithm, pp.588-592.

L. de Alfaro, T.A. Henzinger and F. Mang. Detecting errors before reaching them. CAV,
LNCS 2725: 186-201, 2000.

E.W. Dijkstra. A note on two problems in connection with graphs. Num. Math., 1:395-412
(1959).

D. Eppstein. Finding the k shortest paths. SIAM J. Comput. 28(2): 652-673 (1998).

G.D. Forney. The Viterbi algorithm. Proc. of the IEEE 61(3): 268-278 (1973).

M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

A. Gurfinkel and M. Chechik. Proof-like counter-examples. TACAS, LNCS 2619: 160-175,
2003.

H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Asp.
Comput. 6(5): 512-535 (1994).

V.M. Jiménez and A. Marzal. Computing the K shortest paths: A new algorithm and an
experimental comparison. WAE 1999, LNCS 1668: 15-29, 1999.

H. Jin, K. Ravi and F. Somenzi. Fate and free will in error traces. STTT 6(2): 102-116 (2004).
E.L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Win-
ston, 1976.

E.Q.V. Martins and M.M.B. Pascoal. A new implementation of Yen’s ranking loopless paths
algorithm. 40R 1(2): 121-133 (2003).

E.Q.V. Martins, M.M.B. Pascoal and J.L.E. Dos Santos. Deviation algorithms for ranking
shortest paths. Int. J. Found. Comput. Sci. 10(3): 247-262 (1999).

K. Mehlhorn and M. Ziegelmann. Resource constrained shortest paths. ESA 2000, LNCS
1879: 326-337, 2000.

S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-
valued abstraction-refinement. CAV, LNCS 2725: 275-287, 2003.

A.J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Trans. on Inf. Theory 13(2):260-269, 1967.

Bisimulation Minimisation Mostly Speeds Up
Probabilistic Model Checking

Joost-Pieter Katoen!?, Tim Kemna?, Ivan Zapreev':2, and David N. Jansen':?

1 Software Modeling and Verification Group, RWTH Aachen, Germany
2 Formal Methods and Tools, University of Twente, The Netherlands

Abstract. This paper studies the effect of bisimulation minimisation in
model checking of monolithic discrete-time and continuous-time Markov
chains as well as variants thereof with rewards. Our results show that—as
for traditional model checking—enormous state space reductions (up to
logarithmic savings) may be obtained. In contrast to traditional model
checking, in many cases, the verification time of the original Markov chain
exceeds the quotienting time plus the verification time of the quotient.
We consider probabilistic bisimulation as well as versions thereof that
are tailored to the property to be checked.

1 Introduction

Probabilistic model checking enjoys a rapid increase of interest from different
communities. Software tools such as PRISM [31] (with about 4,000 downloads),
MRMC [29], and LiQuor [] support the verification of Markov chains or variants
thereof that exhibit nondeterminism. They have been applied to case studies
from areas such as randomised distributed algorithms, planning and Al, security,
communication protocols, biological process modeling, and quantum computing.
Probabilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [II], Statemate [9],
and the stochastic process algebra PEPA [24], and are used for a probabilistic
extension of Promela [4].

The typical kind of properties that can be checked is time-bounded reach-
ability properties—“Does the probability to reach a certain set of goal states
(by avoiding bad states) within a maximal time span exceed %?”—and long-run
averages— “In equilibrium, does the likelihood to leak confidential information
remain below 10~4?” Extensions for cost-based models allow for checking more
involved properties that refer to e.g., the expected cumulated cost or the in-
stantaneous cost rate of computations. Intricate combinations of numerical or
simulation techniques for Markov chains, optimisation algorithms, and tradi-
tional LTL or CTL model-checking algorithms result in simple, yet very efficient
verification procedures. Verifying time-bounded reachability properties on mod-
els of tens of millions of states usually is a matter of seconds.

Like in the traditional setting, probabilistic model checking suffers from state
space explosion: the number of states grows exponentially in the number of
system components and cardinality of data domains. To combat this problem,

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 87[101] 2007.
© Springer-Verlag Berlin Heidelberg 2007

88 J.-P. Katoen et al.

various techniques have been proposed in the literature. Variants of binary de-
cision diagrams (multi-terminal BDDs) have been (and still are) successfully
applied in PRISM [31] to a range of probabilistic models, abstraction-refinement
has been applied to reachability problems in MDPs [12], partial-order reduction
techniques using Peled’s ample-set method have been generalised to MDPs [19],
abstract interpretation has been applied to MDPs [36], and various bisimulation
equivalences and simulation pre-orders allow model aggregation prior to model
checking, e. g., [1I39]. Recently proposed techniques include abstractions of prob-
abilities by intervals combined with three-valued logics for DTMCs [152526],
stochastic ordering techniques for CSL model checking [8], abstraction of MDPs
by two-player stochastic games [32], and symmetry reduction [33].

The purpose of this paper is to empirically investigate the effect of strong
bisimulation minimisation in probabilistic model checking. We hereby focus on
fully probabilistic models such as discrete-time and continuous-time Markov
chains (DTMCs and CTMCs, for short), and variants thereof with costs. The
advantages of probabilistic bisimulation [34] in this setting are manifold. It pre-
serves the validity of PCTL [20] and CSL [2l6] formulas, variants of CTL for the
discrete- and continuous-time probabilistic setting, respectively. It implies ordi-
nary lumpability of Markov chains [I0], an aggregation technique for Markov
chains that is applied in performance and dependability evaluation since the
1960s. Quotient Markov chains can be obtained in a fully automated way. The
time complexity of quotienting is logarithmic in the number of states, and lin-
ear in the number of transitions—as for traditional bisimulation minimisation—
when using splay trees (a specific kind of balanced tree) for storing partitions
[14]. Besides, probabilistic bisimulation can be used for obtaining (coarser) ab-
stractions that are tailored to the properties of interest (as we will see), and
enjoys the congruence property for parallel composition allowing compositional
minimisation. We consider explicit model checking as the non-trivial interplay
between bisimulation and MTBDDs would unnecessarily complicate our study;
such symbolic representations mostly grow under bisimulation minimisation [23].

Thanks to extensive studies by Fisler and Vardi [I6/I7JI8], it is known that
bisimulation minimisation for LTL model checking and invariant verification
leads to drastic state space reductions (up to logarithmic savings) but at a time
penalty: the time to minimise and model check the resulting quotient Kripke
structure significantly exceeds the time to verify the original model. This paper
considers these issues in probabilistic (i. e., PCTL and CSL) model checking. To
that end, bisimulation minimisation algorithms have been realised in the pro-
totypical explicit-state probabilistic model checker MRMC, several case studies
have been considered that are widely studied in the literature (and can be consid-
ered as benchmark problems), and have been subjected to various experiments.
This paper presents our results. As expected, our results show that enormous
state space reductions (up to logarithmic savings) may be obtained. In con-
trast to the results by Fisler and Vardi [T6JI7J18], the verification time of the
original Markov chain mostly exceeds the quotienting time plus the verification
time of the quotient. This effect is stronger for probabilistic bisimulation that

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 89

is tailored to the property to be checked and for model checking Markov chains
with costs (i.e., rewards). This is due to the fact that probabilistic model check-
ing is more time-consuming than traditional model checking, while minimiza-
tion w.r.t. probabilistic bisimulation is only slightly slower than for traditional
bisimulation.

The paper is organised as follows. Section] introduces the considered proba-
bilistic models. Section [3] considers probabilistic bisimulation and the algorithms
used. Section Ml presents the considered case studies, the obtained results, and
analyses these results. Section [l concludes the paper.

2 Preliminaries

DTMCs. Let AP be a fixed, finite set of atomic propositions. A (labelled) DTMC
D is a tuple (S,P, L) where S is a finite set of states, P : § x S — [0,1] is a
probability matriz such that >, o P(s,s') =1 forall s € S, and L : § — 24F
is a labelling function which assigns to each state s € S the set L(s) of atomic
propositions that hold in s. A path through a DTMC is a sequenc of states
o = $98182... with P(s;,8;,41) > 0 for all 7. Let Path®? denote the set of all
paths in DTMC D. o[i] denotes the (i+1)th state of o, i.e., o[i] = s;.

The logic PCTL. Let a € AP, probability p € [0,1], k € N (or k£ = 00) and
be either < or >. The syntax of Probabilistic CTL (PCTL) [20] is defined by:

b =t ‘ a ‘ b N D ‘ ny ‘ Poap(® USF @),

A state s satisfies Poap(® USF W) if {0 € PathP(s) | o = & USF @} has a
probability that satisfies bx p. A path o satisfies ® U=F ¥ if within k steps a -
state is reached, and all preceding states satisfy @. That is, if o[j] = ¥ for some
j <k, and oi] = @ for all i < j. We define the abbreviation OSF® = tt USF .
The unbounded until formula that is standard in temporal logics is obtained by
taking k = 0o, i.e., DU W = & US> W]

Given a set F' of PCTL formulas, we denote with PCTL g the smallest set of
formulas that contains F' and is closed under the PCTL operators A, =, and U.

Verifying hop-constrained probabilistic reachability. PCTL model checking [20]
is carried out in the same way as verifying CTL by recursively computing the
set Sat(®) = {s € S| s = @}. The probability of {o | 0 = & USF U} is the
least solution of the following linear equation system. Let S; = {s | s E ¥ },

So={s|sE-"PA-¥} and S, ={s|sEPA-¥} =5\ (5 USy).

1 if se 51
Prob® (s, ® USF W) = ZSP(&S’) - Prob® (s, @ USF1 W) ifs€ S Ak >0

s'e

0 otherwise

! In this paper, we do not dwell upon the distinction between finite and infinite paths.
2 For simplicity, we do not consider the next operator.

90 J.-P. Katoen et al.

One can simplify this system by replacing Sy by Uy = So U {s € S» | =30 €
PathP(s) : 0 = ® U W }. If k = oo, one may also replace S; by Uy = S; U {s €
Sy | Yo € Path®(s) : o |= & U ¥ }. The sets Uy and U; can be found via a simple
graph analysis (a depth-first search) in time O(|S|+|P]).

Alternatively, the probabilities can be calculated by making the states s & S,
absorbing as follows. For DTMC D = (S,P,L) and A C S, let D[A] be the
DTMC (S,P[A], L) where the states in A are made absorbing: If s € A, then
P[4](s,s) = 1 and P[A](s,s") = 0 for s’ # s. Otherwise, P[A](s,s’) = P(s, s).
Let 72 (s E g) denote the probability of being in state s’ after exactly k steps
in DTMC D when starting in s. Then:

Prob® (s, & USF W) = Z aPlSouSil (5 & oy,
s'€Sy

Calculating Prob® (s, ® USF) thus amounts to computing (P[Sp U S1])*-1s,,
where 1g, (s) = 1 if s € S1, and 0 otherwise.

CTMCs. A (labelled) CTMC C is a tuple (S, P, E, L) where (S, P, L) isa DTMC
and E : S — R provides the exit rate for each state. The probability of taking
a transition from s within ¢ time units equals 1 — e~ F()'t. The probability of
taking a (tl;ansition from state s to state s’ within time ¢ is given by: P(s,s’) -
(1 _ €_E s 't).

A path through a CTMC is a sequence of states and sojourn times o =
sotositr... with P(s;,8,41) > 0 and ¢; € Rxq for all 4. Let Path® denote the
set of all paths in CTMC C.

Uniformisation. In a uniform CTMC, the exit rate of all states is the same.
A non-uniform CTMC can be uniformized by adding self loops as follows: let
C = (S,P,E, L) be a CTMC and choose E > max,es F(s). Then, Unif 5(C) =
(S,P',E' L) where E'(s) = E for all s, P'(s,s') = E(s)P(s,s')/E if s # s’ and
P'(s,s) =1-3,_,,P'(s,8). The probability to be in a given state at a given
time in the uniformized CTMC is the same as the one in the original CTMC.

The logic CSL. Continuous stochastic logic (CSL, [6]) is similar to PCTL. For
a, p and < as before, time bounds t; € [0,00) and t2 € [t1, 00|, the syntax is:

G = tt ‘ a ‘ oA D ’ - ‘ Poap(@ U2 @) | S, ()

A state s satisfies Poq, (@ U2 W) if the set of timed paths { o € Path®(s) |
o = @ Utt2l W) has a probability 0 p. A timed path satisfies @ U[t-%2] @ if
within time ¢ € [t1,t2] a U-state is reached, and all preceding states satisfy .
We will mostly let t; = 0 and denote this as @ USt2 W. A state s satisfies the
formula Suqp(P) if the steady-state probability to be in a @-state (when starting
in s) satisfies the constraint p< p.

CSL model checking [2l6] can be implemented as follows. The operator S can
be solved by a (standard) calculation of the steady-state probabilities together

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 91

with a graph analysis. For the time-bounded until operator, note that, after
uniformisation the probability to take k steps within time ¢ does not depend
on the actual states visited. This probability is Poisson distributed, and the
probability to satisfy the until formula within k& steps is calculated using the
PCTL algorithm. The total probability is an infinite sum over all k, which can
be approximated well.

Rewards. A discrete-time Markov reward model (DMRM) D, is a tuple (D, r)
where D is a DTMC and r : § — R>¢ is a reward assignment function. The
quantity r(s) indicates the reward that is earned on leaving state s. Rewards
could also be attached to edges in a DTMC, but this does not increase expres-
sivity. A path through a DMRM is a path through its DTMC, i. e., sequence of
states o = s¢ 51 s2.... with P(s;, s;4+1) > 0 for all 4.

Let a, p and k be as before, and r € R>(be a nonnegative reward bound. The
two main operators that extend PCTL to Probabilistic Reward CTL (PRCTL)
[1] are Pocp (P USF W) and EZF(P). The until-operator is equipped with a bound
on the maximum number (k) of allowed hops to reach the goal states, and a
bound on the maximum allowed cumulated reward (r) before reaching these
states. Formula £Z¥(®) asserts that the expected cumulated reward in @-states
until the k-th transition is at most r. Thus, in order to check the validity of this
formula for a given path, all visits to @-state are considered in the first k steps
and the total reward that is obtained in these states; the rewards earned in other
states or earned in ®-states after the first k steps are not relevant. Whenever
the expected value of this quantity over all paths that start in state s is at most
r, state s = EZF (D).

A continuous-time Markov reward model (CMRM) C,. is a tuple (C,7) where
Cisa CTMC and r : S — R> is a reward assignment function (as before). The
quantity r(s) indicates that if ¢ time units are spent in state s, a reward r(s) - ¢
is acquired. A path through a CMRM is a path through its underlying CTMC.
Let 0 = sgtgsiti... be a path. For ¢t = Zf;é t; + ¢ with ¢/ < t;, we define
r(o,t) = Z;:é tj-r(sj)+1t"-r(s), the cumulative reward along o up to time t.

CSRL [5] is a logic that extends CSL with one operator Po (P US! W) to ex-
press time- and reward-bounded properties. Checking this property of a CMRM
is difficult. One can either approximate the CMRM by a discretisation of the
rewards or compute for each (untimed) path the probability to meet the bound
and sum them up. Reward-bounded until properties of a CMRM can be checked
via a transformation of rewards into exit rates and checking a corresponding
time-bounded until property [5].

3 Bisimulation

Bisimulation. Let D = (S,P, L) be a DTMC and R an equivalence relation on
S. The quotient of S under R is denoted S/R. R is a strong bisimulation on D
if for s1 R so:

L(s1) =L(s2) and P(s1,C)="P(se,C) forall C'in S/R.

92 J.-P. Katoen et al.

s1 and sg in D are strongly bisimilar, denoted s; ~4 so, if there exists a strong
bisimulation R on D with s; R s2. Strong bisimulation [I0J24] for CTMCs, that
implies ordinary lumpability, is a mild variant of the notion for the discrete-time
probabilistic setting: in addition to the above, it is also required that the exit
rates of bisimilar states are equal: E(s1) = E(s2).

Measure-driven bisimulation. Requiring states to be equally labelled with all
atomic propositions is rather strong if one is interested in checking formulas that
just refer to a (small) subset of propositions, or more generally, sub-formulas.
The following notion weakens the labelling requirement in strong bisimulation
by requiring equal labellling for a set of PCTL formulas F'. Let D = (S, P, L) be
a DTMC and R an equivalence relation on S. R is a F'-bisimulation on D if for
s1 R so:

S$1EP < sy =dlorall e F
P(s1,C) =P(s2,C) for all C € S/R.

States s; and so are F-bisimilar, denoted s; ~p $o, if there exists an F-
bisimulation R on D with s; R s2. F-bisimulation on CTMCs (for a set of
CSL formulas F') is defined analogously [5]. Note that strong bisimilarity is F-
bisimilarity for F' = AP.

Preservation results. Aziz et al. [3] have shown that strong bisimulation is sound
and complete with respect to PCTL (and even PCTL*):

Proposition 1. Let D be a DTMC, R a bisimulation and s an arbitrary state
of D. Then, for all PCTL formulas @, s =p ¢ <= [s|r Fp/r P.

This result can be generalised to F-bisimulation in the following way:

Proposition 2. Let D be a DTMC, R an F-bisimulation and s an arbitrary
state of D. Then, for all PCTLp formulas ®, s =p ¢ <= [s|r Fp/r P

Similar results hold for CSL and bisimulation on CTMCs [6], for PRCTL on
DMRM, and for CSRL on CMRM.

Bisimulation minimisation. The preservation results suggest that one can ver-
ify properties of a Markov chain on a bisimulation quotient. The next issue to
consider is how to obtain the quotient. An often used algorithm (called partition
refinement) is based on splitting: Let IT be a partition of S. A splitter for some
block B € II is a block Sp € IT such that the probability to enter Sp is not
the same for each state in B. In this case, the algorithm splits B into subblocks
such that each subblock consists of states s with identical P(s, Sp). This step
is repeated until a fixpoint is reached. The final partition is the coarsest bisim-
ulation that respects the initial partition. The worst-case time complexity of this

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 93

algorithm is O(|P|log |S|) provided that splay trees are used to store blocks [I4].
These data structures are adopted in our implementationﬁ

Initial partition. The choice of initial partition in the partition refinement al-
gorithm determines what kind of bisimulation the result is. If we group states
labelled with the same atomic propositions together, the result is the strong
bisimulation quotient S/~g. If we choose the initial partition according to the
satisfaction of formulas in F, the resulting partition is the F-bisimulation quo-
tient S/~p. To get the smallest bisimulation quotient, it is important to start
with a coarse initial partition. Instead of only calculating the strong bisimulation
quotient, we will also use measure-driven bisimulation for a suitable set F.

A naive approach for formula Puqp, (@ U &) is to choose F = {¥, P A-¥ }. In
fact, Poqp(@ U ¥) is not in PCTL, but the equivalent formula Puqp (A U &)
is. This yields an initial partition consisting of the sets S; = Sat(¥), S, =
Sat(PA-T) and Sp = S\ (S1US?) (cf. Section[Z). Note that selecting F = { ¥, P }
would lead to a less efficient initial partition with four blocks instead of three. We
improve this initial partition by replacing Sy by Uy = Sat(P<o(® U ¥)) and Si
by Uy, which is essentiallyf] Sat(P>1(P U ¥)). (Defining Uy and U, as satisfaction
sets of some formula has the advantage that we can still use Proposition[2l) The
sets of states Uy and U; can be collapsed into single states ug and uq, respectively.
This results in the initial partition { {uo}, {u1}, S\ (Uo UU1) }.

For bounded until, one can still use Uy, but not Uy, since the fact that (al-
most) all paths satisfy @ U ¥ does not imply that these paths reach a W-state
within the step or time bound. Therefore, for this operator the initial partition
is {{uo}, {s1}, S\ (Uo U S1) } with ug as before and s; the collapsed state for
S11 Thus, for bounded until the measure-driven initial partition is finer than
for unbounded until. In the experiments reported in the next section, the effect
of the granularity of the initial partition will become clear.

4 Experiments

To study the effect of bisimulation in model checking, we realised the minimisa-
tion algorithms in MRMC and applied them to a variety of case studies, most of
which can be obtained from the PRISM webpageﬁ We used PRISM to specify
the models and generate the Markov chains. Subsequently, the time and memory
requirements have been considered for verifying the chains (by MRMC), and for
minimising plus verifying the lumped chain (both by MRMC). All experiments
were conducted on a 2.66 GHz Pentium 4 processor with 1 GB RAM running
Linux. All reported times are in milliseconds and are obtained by taking the
average of running the experiment 10 times.

3 In practice, an implementation using red-black trees is often slightly faster, although
this raises the theoretical complexity to O(|P|log? |S|), cf. [I3, Section 3.4].

* Up to states s where the set {0 € Path®(s) | o £ ® U ¥} is only almost empty.

5 For the sake of brevity, we omit the details for the optimal initial partition for
time-bounded until-formulas of the form U1 2! with 0 < t1.

5 see http://www.cs.bham.ac.uk/dxp/prism/index.php.

94 J.-P. Katoen et al.

4.1 Discrete Time

Crowds protocol [38]. This protocol uses random routing within a group of nodes
(a crowd) to establish a connection path between a sender and a receiver. Rout-
ing paths are reconstructed once the crowd changes; the number of such new
route establishments is R, and is an important parameter that influences the
state space. Random routing serves to hide the secret identity of a sender. The
table below summarises the results for checking P<,(<Oobserve) where observe
characterises a situation in which the sender’s id is detected. The parameter NV
in the first column is the number of honest crowd members; our models include
N/5 dishonest members. The second column shows parameter R. The next three
columns indicate the size of the state space of the DTMC (i.e., |S|), the number
of transitions (i.e., the number of non-zero entries in P), and the verification
time. The next three columns indicate the number of states in the quotient
DTMC, the time needed for obtaining this quotient, and the time to check the
validity of the same formula on the quotient. The last two columns indicate
the reduction factor for the number of states and total time. Note that we ob-
tain large state space reductions. Interestingly, in terms of time consumption,
quotienting obtains a reduction in time of about a factor 4 to 7.

original DTMC lumped DTMC red. factor
N R states transitions ver. time blocks lump time ver. time states time
53 1198 2038 3.2 53 0.6 0.3 22.6 3.7
5 4 3515 6035 11 97 2.0 0.5 36.2 4.4
55 8653 14953 48 153 6.0 0.9 56.6 6.9
56 18817 32677 139 209 14 1.4 90.0 9.0
10 3 6563 15143 24 53 4.6 0.2 124 4.9
10 4 30070 70110 190 97 29 0.5 310 6.4
10 5 111294 261444 780 153 127 0.9 727 6.1
10 6 352535 833015 2640 221 400 1.4 1595 6.6
15 3 19228 55948 102 53 23 0.2 363 4.4
15 4 119800 352260 790 97 190 0.5 1235 4.1
15 5 592060 1754860 4670 153 1020 0.9 3870 4.6
15 6 2464168 7347928 20600 221 4180 1.5 11150 4.9

Leader election [28]. In this protocol, N nodes that are arranged in an unidi-
rectional ring select an identity randomly according to a uniform distribution
on {1,..., K }. By means of synchronous message passing, processes send their
identity around the ring. The protocol terminates once a node has selected a
unique id (the node with the highest unique id becomes the leader); if no such
node exists, the protocol restarts. The property of interest is the probability to
elect a leader within a certain number of rounds: P<,(C<N+1)3 Jeader elected).
The obtained results are summarised in the table below. For a fixed N, the num-
ber of blocks is constant. This is due to the fact that the initial state is the only
probabilistic state and that almost all states that are equidistant w.r.t. this ini-
tial state are bisimilar. For N = 4, no gain in computation time is obtained due
to the relatively low number of iterations needed in the original DTMC. When N
increases, bisimulation minimisation also pays off timewise; in this case a small
reduction of the time is obtained (more iterations are needed due to the bound
in the until-formula that depends on N).

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 95

original DTMC lumped DTMC red. factor
N K states transitions ver. time blocks lump time ver. time states time
4 2 55 70 0.02 10 0.05 0.01 5.5 0.4
4 4 782 1037 0.4 10 0.5 0.01 78.2 0.8
4 8 12302 16397 7.0 10 9.0 0.01 1230 0.8
4 16 196622 262157 165.0 10 175 0.01 19662 0.9
5 2 162 193 0.1 12 0.1 0.02 13.5 0.9
5 4 5122 6145 2.8 12 2.9 0.02 427 0.9
5 6 38882 46657 28 12 26 0.02 3240 1.1
5 8 163842 196609 140 12 115 0.02 13653 1.2

Cyclic polling server [27]. This standard example in performance analysis con-
siders a set of stations that are allowed to process a job once they possess the
token. The single token circulates among the stations. The times for passing a
token to a station and for serving a job are all distributed exponentially. We
consider the DTMC that is obtained after uniformisation, and check the for-
mula: 73Np(/\§\;£1 —serve; U server), 1.e. with probability < p station 1 will be
served before any other station, as well as a time-bounded version thereof[]
Ordinary (strong) bisimulation yields no state-space reduction. The results for
measure-driven bisimulation minimisation are summarised below. In checking
the bounded until formula, we used the naive initial partition { {so},{s1}, 57 }.
The improved initial partition with {ug} would have led to almost the same num-
ber of blocks as the unbounded until, e.g. 46 instead of 151 blocks for N = 15.
For both formulas, large reductions in state space size as well as computation
time are obtained; the effect of {uo} on the number of blocks is also considerable.

time-bounded until unbounded until
original DTMC lumped DTMC red. factor lumped DTMC red. factor
N states transitions time U<* time U blocks time states time blocks time states time
4 96 368 1.4 2.1 19 0.4 5.1 3.5 12 0.9 8 2.3
6 576 2784 10 11 34 1.2 169 8.3 18 1.4 32 7.9
8 3072 17920 62 52 53 4.0 58 15.5 24 2.9 128 17.9
12 73728 577536 3050 3460 103 120 716 25.4 36 55 2048 62.9

15 737280 6881280 39000 32100 151 1590 4883 24.5 45 580 16384 55.3

Randomised mutual exclusion [37]. In this mutual exclusion algorithm, N
processes make random choices based on coin tosses to ensure that they can all
enter their critical sections eventually, although not simultaneously. The following
table summarizes our results for verifying the property that process 1 is the first
to enter the critical section, i. e., the PCTL formula qu(/\;\;l —enter; U entery).

strong bisimulation F-bisimulation
original DTMC lumped DTMC red. factor lumped DTMC red. factor
N states transitions ver. time blocks lump time ver. time states time blocks time states time
3 2368 8272 3.0 1123 8.0 1.6 2.1 03 233 2.9 10.2 1.0
4 27600 123883 47.0 5224 192 19 5.3 04 785 29 35.2 1.6
5 308800 1680086 837 18501 2830 120 16.7 0.3 2159 507 143 1.7
6 3377344 21514489 9589 — > 107 - - — 5166 7106 653 1.4

Due to the relatively high number of transitions, quotienting the DTMC ac-
cording to AP-bisimilarity is computationally expensive, and takes significantly

" For the sake of comparison, the unbounded until-formula is checked on the uni-
formised and not on the embedded DTMC.

96 J.-P. Katoen et al.

more time than verifying the original DTMC. However, measure-driven bisimi-
larity yields a quotient that is roughly an order of magnitude smaller than the
quotient under A P-bisimilarity. Due to the coarser initial partition, this quotient
is constructed rather fast. In this case, verifying the original model is more time
consuming.

4.2 Continuous Time

Workstation cluster [22)]. This case study considers a system consisting of two
clusters of workstations connected via a backbone. Each cluster consists of NV
workstations, connected in a star topology with a central switch that provides the
interface to the backbone. Each component can break down according to a failure
distribution. A single repair unit is available to repair the failed components. The
number of correctly functioning workstations determines the level of quality of
service (QoS). The following two tables summarise the results for checking the
probability that:

— In the long run, premium QoS will be delivered in at least 70% of the cases;
— QoS drops below minimum QoS within 40 time-units is at most 0.1;
— QoS goes from minimum to premium between 20 and 40 time units.

The last property involves a sequence of two transient analyses on different
CTMCs. The results for the long-run property:

original CTMC lumped CTMC red. factor

N states transitions ver. time blocks lump time ver. time states time
8 2772 12832 3.6 1413 12 130 2 0.03
16 10132 48160 21 5117 64 770 2 0.03
32 38676 186400 114 19437 290 215 2 0.2
64 151060 733216 730 75725 1360 1670 2 0.2
128 597012 2908192 6500 298893 5900 14900 2 0.2
256 2373652 11583520 103000 1187597 25400 175000 2 0.2

The plain verification time of the quotient is larger than of the original CTMC, de-
spite a state space reduction of a factor two. This is due to the fact that the subdom-
inant eigenvalues of the Gauss-Seidel iteration matrices differ significantly—the
closer this value is to one, the slower the convergence rate for the iterative Gauss-
Seidel method. For instance for N = 8, the values of the original (0.156) and the
quotient (0.993) are far apart and the number of iterations needed differ for about
two orders of magnitude. The same applies for N = 16. These differences are much

smaller for larger values of N.
The results for time-bounded reachability:

time-bounded until [0, 40] time-bounded until [20, 40]
original CTMC lumped CTMC red. factor lumped CTMC red. factor

N states transitions ver. time ver. time blocks time states time blocks time states time
US40 120,40

8 2772 12832 36 49 239 16.3 11.6 2.2 386 24.0 7.2 2.0
16 10132 48160 360 480 917 70 11.0 5.1 1300 96.0 7.8 5.0
32 38676 186400 1860 2200 3599 300 10.7 6.2 4742 430 8.2 5.1
64 151060 733216 7200 8500 14267 1810 10.6 4.0 18082 2550 8.4 3.3
128 597012 2908192 29700 33700 56819 9300 10.5 3.2 70586 12800 85 2.6
256 2373652 11583520 121000 143000 226787 45700 10.5 2.6 278890 60900 85 23

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 97

These results are obtained using a measure-driven bisimulation. In contrast, for
an AP-bisimulation, we only obtained a 50% state-space reduction. For measure-
driven bisimulation another factor 4-5 reduction is obtained. The reduction fac-
tors obtained for this case study are not so high, as its formal (stochastic Petri
net) specification already exploits some lumping; e. g., workstations are modeled
by anonymous tokens.

IEEE 802.11 group communication protocol [35)]. This is a variant of the cen-
tralized medium access protocol of the IEEE 802.11 standard for wireless local
area networks. The protocol is centralized in the sense that medium access is
controlled by a fixed node, the Access Point (AP). The AP polls the wireless
stations, and on receipt of a poll, stations may broadcast a message. Stations
acknowledge the receipt of a message such that the AP is able to detect whether
or not all stations have correctly received the broadcast message. In case of a
detected loss, a retransmission by the originator takes place. It is assumed that
the number of consecutive losses of the same message is bounded by OD, the
omission degree. This all refers to time-critical messages; other messages are sent
in another phase of the protocol. The property of interest is, as in [35] and other
studies of this protocol, the probability that a message originated by the AP
is not received by at least one station within the duration of the time-critical
phase, i.e., t = 2.4 milliseconds, i. e., Ppp(O=2400fgil) where fail identifies all
states in which more than OD losses have taken place. The following table re-
ports the results for the verification of this property for different values of OD
and the minimization results for a measure-driven bisimulation.

original CTMC lumped CTMC red. factor

OD states transitions ver. time blocks lump + ver. time states time
4 1125 5369 121.9 71 13.5 15.9 9.00
12 37349 236313 7180 1821 642 20.5 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 224 7.9
36 2076773 15187833 5103900 91391 77694 22.7 6.6
40 3101445 22871849 7725041 135752 127489 229 6.1

We obtain a state space reduction of about a factor 22, which results in an
efficiency improvement of a factor 5 to 10. The reason that the verification times
are rather excessive for this model stems from the fact that the time bound
(24000) is very large, resulting in many iterations. These verification times can
be improved by incorporating an on-the-fly steady-state detection procedure [30],
but this is not further considered here.

Simple P2P protocol [33]. This case study describes a simple peer-to-peer pro-
tocol based on BitTorrent—a “torrent” is a small file which contains metadata
about the files to be shared and about the host computer that coordinates the
file distribution. The model comprises a set of clients trying to download a file
that has been partitioned into K blocks. Initially, there is a single client that has
already obtained all blocks and N additional clients with no blocks. Each client
can download a block (lasting an exponential delay) from any of the others but
they can only attempt four concurrent downloads for each block. The following

98 J.-P. Katoen et al.

table summarises our minimisation results using AP-bisimilarity in columns 3
through 6. The property of interest is the probability that all blocks are down-
loaded within 0.5 time units. The last columns list the results for a recently
proposed symmetry reduction technique for probabilistic systems [33] that has
been realised in PRISM.

bisimulation minimisation symmetry reduction
original CTMC lumped CTMC red. factor reduced CTMC red. factor
N states ver. time blocks lump time ver. time states time states red. time ver. time states time
2 1024 5.6 56 1.4 0.3 183 3.3 528 12 2.9 1.93 0.38
3 32768 410 252 170 1.3 130 2.4 5984 100 59 5.48 2.58
4 1048576 22000 792 10200 4.8 1324 2.2 52360 360 820 20.0 18.3

We observe that bisimulation minimisation leads to a significantly stronger state-
space reduction than symmetry reduction. For N = 3 and N = 4, bisimulation
minimisation leads to a state-space reduction of more than 23 and 66 times,
respectively, the reduction of symmetry reduction. Symmetry reduction is—as
expected—much faster than bisimulation minimisation, but this is a somewhat
unfair comparison as the symmetries are indicated manually. These results sug-
gest that it is affordable to first apply a (fast) symmetry reduction, followed by
a bisimulation quotienting on the obtained reduced system. Unfortunately, the
available tools did not allow us to test this idea.

4.3 Rewards

This section reports on the results for bisimulation minimisation for Markov
reward models. Note that the initial partitions need to be adapted such that
only states with equal reward are grouped. We have equipped two DTMCs and
one CTMC with a reward assignment function 7:

— Crowds protocol (DMRM): the reward indicates the number of messages
sent;

— Randomised mutual exclusion protocol (DMRM): the reward indicates the
number of attempts that have been undertaken to acquire access to the
critical section;

— Workstation cluster (CMRM): the reward is used to measure the repair time.

Recall that for DMRMSs, r(s) indicates the reward that is earned on leaving a
state, while for CMRMs, r(s)-t is the earned reward when staying ¢ time-units
in s. The experiments are focused on verifying time- and reward-bounded until-
formulas. For DMRMs, these formulas are checked using a path graph generation
algorithm as proposed in [I] which has a time complexity in O(k-r-|S|3), where
k and r are the time-bound and reward-bound, respectively. For CMRMs, we
employed the discretization approach by Tijms and Veldman as proposed in [21]
which runs in time O(t-r-|S|3-d=2) where d is the step size of the discretisation.
In our experiments, the default setting is d = 312.

For the Crowds protocol (for R = 3), we checked the probability that the
sender’s id is discovered within 100 steps and maximally two messages, i.e.,
Py (023 0bserve). Tn case of the randomised mutual exclusion protocol, we

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 99

checked P<4(/\j\;é1 —enter; USD) entery), i. ., maximally 10 attempts are allowed
to enter the critical section. Finally, for the workstation cluster, we checked the
change of providing minimum QoS to premium QoS within maximally 5 time
units of repair (and 10 time units). All results are listed in the following table.

Due to the prohibitive (practical) time-complexity, manageable state space
sizes are (much) smaller than for the case without rewards. Another consequence
of these large verification times, bisimulation minimisation is relatively cheap,
and results in possibly drastic time savings, as for the Crowds protocol.

Crowds protocol with rewards

original DTMC lumped DTMC red. factor
N states transitions ver. time blocks lump + ver. time states time
5 1198 2038 2928 93 44.6 12.88 65.67
10 6563 15143 80394 103 73.5 63.72 1094.49
15 19228 55948 1004981 103 98.7 186.68 10182.13
20 42318 148578 5174951 103 161 410.85 32002.61
Randomised mutual exclusion protocol with rewards
2 188 455 735 151 616 1.25 1.19
3 2368 8272 60389 1123 19010 2.11 3.18
4 27600 123883 5446685 5224 298038 5.28 18.28
5 308800 1680086 > 107 18501 3664530 16.69 -
Workstation cluster with rewards
2 276 1120 278708 147 55448 1.88 5.03
3 512 2192 849864 268 151211 1.91 5.62
4 820 3616 2110095 425 347324 1.93 6.08
5 1200 5392 > 107 618 2086575 < 1.94 -
6 1652 7520 > 107 847 3657682 1.95 -

5 Concluding Remarks

Our experiments confirm that significant (up to logarithmic) state space reduc-
tions can be obtained using bisimulation minimisation. The appealing feature of
this abstraction technique is that it is fully automated. For several case studies,
also substantial reductions in time have been obtained (up to a factor 25). This
contrasts results for traditional model checking where bisimulation minimisation
typically outweighs verifying the original system. Time reduction strongly de-
pends on the number of transitions in the Markov chain, its structure, as well as
on the convergence rate of numerical computations. The P2P protocol experi-
ment shows encouraging results compared with symmetry reduction [33] (where
symmetries are detected manually). For measure-driven bisimulation for models
without rewards, this speedup comes with no memory penalty: the peak memory
use is typically unchanged; for ordinary bisimulation some experiments showed
an increase of peak memory up to 50 %. In our case studies with rewards, we
experienced a 20-40 % reduction in peak memory use.

We plan to further investigate combinations of symmetry reduction with
bisimulation minimisation, and to extend our experimental work towards MDPs
and simulation preorders.

Acknowledgement. This research has been performed as part of the MC=MC project
that is financed by the Netherlands Organization for Scientific Research (NWO), and
the project VOSS2 that is financed by NWO and the German Research Council (DFG).

100

J.-P. Katoen et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In

Larsen, K. G., et al. (eds.): FORMATS. LNCS, Vol. 2791. Springer, Berlin (2003)
88—-104

. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time

Markov chains. ACM TOCL 1 (2000) 162—-170

. Aziz, A., Singhal, V., Balarin, F., Brayton, R. K., Sangiovanni-Vincentelli, A. L.:

It usually works: the temporal logic of stochastic systems. In Wolper, P. (ed.):
CAV. LNCS, Vol. 939. Springer, Berlin (1995) 155-165

. Baier, C., Ciesinski, F., Grofler, M.: ProbMela and verification of Markov decision

processes. Performance Evaluation Review 32 (2005) 2227

. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the logical characteri-

sation of performability properties. In Montanari, U., et al. (eds.): I[CALP. LNCS,
Vol. 1853. Springer, Berlin (2000) 780-792

. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms

for continuous-time Markov chains. IEEE TSE 29 (2003) 524-541

. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time

semantics for Markov chains. Information and Computation 200 (2005) 149-214

. Ben Mamoun, M., Pekergin, N., Younes, S.: Model checking of continuous-time

Markov chains by closed-form bounding distributions. In: QEST. IEEE CS, Los
Alamitos (2006) 189-198

. Bode, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,

Wimmer, R., Becker, B.: Compositional performability evaluation for STATEMATE.
In: QEST. IEEE CS, Los Alamitos (2006) 167-178

Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability 31 (1994) 59-75

D’Aprile, D., Donatelli, S., Sproston, J.: CSL model checking for the GreatSPN
tool. In Aykanat, C., et al. (eds.): Computer and Information Sciences, ISCIS.
LNCS, Vol. 3280. Springer, Berlin (2004) 543-553

D’Argenio, P. R., Jeannet, B., Jensen, H. E., Larsen, K. G.: Reachability analysis
of probabilistic systems by successive refinements. In de Alfaro, L., et al. (eds.):
PAPM-PROBMIV. LNCS, Vol. 2165. Springer, Berlin (2001) 39-56

Derisavi, S.: Solution of Large Markov Models using Lumping Techniques and
Symbolic Data Structures. PhD thesis, Univ. of Illinois at Urbana-Champaign
(2005)

Derisavi, S., Hermanns, H., Sanders, W. H.: Optimal state-space lumping in
Markov chains. IPL 87 (2003) 309-315

Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In Valmari,
A. (ed.): Model Checking Software. LNCS, Vol. 3925. Springer, Berlin (2006) 71-88
Fisler, K., Vardi, M. Y.: Bisimulation minimization in an automata-theoretic ver-
ification framework. In Gopalakrishnan, G., et al. (eds.): FMCAD. LNCS, Vol.
1522. Springer, Berlin (1998) 115-132

Fisler, K., Vardi, M. Y.: Bisimulation and model checking. In Pierre, L., et al.
(eds.): CHARME. LNCS, Vol. 1703. Springer, Berlin (1999) 338-342

Fisler, K., Vardi, M. Y.: Bisimulation minimization and symbolic model checking.
Formal Methods in System Design 21 (2002) 39-78

Groesser, M., Baier, C.: Partial order reduction for Markov decision processes: a
survey. In de Boer, F. S.; et al. (eds.): FMCO. LNCS, Vol. 4111. Springer, Berlin
(2006) 408-427

Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking 101

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6 (1994) 512-535

Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.-P., Baier, C.: Model checking
performability properties. In: DSN. TEEE CS, Los Alamitos (2002) 103-112
Haverkort, B. R., Hermanns, H., Katoen, J.-P.: On the use of model checking
techniques for quantitative dependability evaluation. In: 19th IEEE Symposium
on Reliable Distributed Systems. IEEE CS, Los Alamitos (2000) 228-237
Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D.; Siegle, M.: On the use
of MTBDDs for performability analysis and verification of stochastic systems. J.
of Logic and Alg. Progr. 56 (2003) 23-67

Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

Huth, M.: An abstraction framework for mixed non-deterministic and probabilistic
systems. In Baier, C., et al. (eds.): Validation of Stochastic Systems. LNCS, Vol.
2925. Springer, Berlin (2004) 419-444

Huth, M.: On finite-state approximants for probabilistic computation tree logic.
TCS 346 (2005) 113-134

Ibe, O. C., Trivedi, K. S.: Stochastic Petri net models of polling systems. IEEFE J.
on Selected Areas in Communications 8 (1990) 1649-1657

Ttai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and
Computation 88 (1990) 60-87

Katoen, J.-P., Khattri, M., Zapreev, I. S.: A Markov reward model checker. In:
QEST. IEEE CS, Los Alamitos (2005) 243-244

Katoen, J.-P., Zapreev, I. S.: Safe on-the-fly steady-state detection for time-
bounded reachability. In: QEST. IEEE CS, Los Alamitos (2006) 301-310
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: a hybrid approach. Int. J. on STTT 6 (2004) 128-142
Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST. IEEE CS, Los Alamitos (2006) 157-166
Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In Ball, T., et al. (eds.): CAV. LNCS, Vol. 4144. Springer, Berlin
(2006) 234248

Larsen, K. G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94 (1991) 1-28

Massink, M., Katoen, J.-P., Latella, D.: Model checking dependability attributes
of wireless group communication. In: DSN. IEEE CS, Los Alamitos (2004) 711-720
Monniaux, D.: Abstract interpretation of programs as Markov decision processes.
Science of Computer Programming 58 (2005) 179-205

Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Distributed
Computing 1 (1986) 53-72

Reiter, M. K., Rubin, A. D.: Crowds: anonymity for web transactions. ACM
Transactions on Information and System Security 1 (1998) 66-92

Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.
IEEE TSE 32 (2006) 531-546

Causal Dataflow Analysis for
Concurrent Programs

Azadeh Farzan and P. Madhusudan

Department of Computer Science,
University of Illinois at Urbana-Champaign
{afarzan,madhu}@cs.uiuc.edu

Abstract. We define a novel formulation of dataflow analysis for con-
current programs, where the flow of facts is along the causal dependencies
of events. We capture the control flow of concurrent programs using a
Petri net (called the control net), develop algorithms based on partially-
ordered unfoldings, and report experimental results for solving causal
dataflow analysis problems. For the subclass of distributive problems,
we prove that complexity of checking data flow is linear in the number
of facts and in the unfolding of the control net.

1 Introduction

Advances in multicore technology and the wide use of languages that inherently
support threads, such as Java, foretell a future where concurrency will be the
norm. Despite their growing importance, little progress has been made in static
analysis of concurrent programs. For instance, there is no standard notion of
a control-flow graph for concurrent programs, while the analogous notion in
sequential programs has existed for a long time [I0]. Consequently, dataflow
analysis problems (arguably the simplest of analysis problems) have not been
clearly understood for programs with concurrency.

While it is certainly easy to formulate dataflow analysis for concurrent pro-
grams using the global product state space of the individual threads, the useful-
ness of doing so is questionable as algorithms working on the global state space
will not scale. Consequently, the literature in flow analysis for threaded programs
concentrates on finding tractable problem definitions for dataflow analysis. A
common approach has been to consider programs where the causal relation be-
tween events is static and apparent from the structure of the code (such as fork-
join formalisms), making feasible an analysis that works by finding fixpoints on
the union of the individual sequential control flow graphs. These approaches are
often highly restrictive (for example, they require programs to have no loops [23]
or at least to have no loops with concurrent fork-join constructs [13/14]), and
cannot model even simple shared-memory program models. In fact, a coherent

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 102-[I16] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Causal Dataflow Analysis for Concurrent Programs 103

formulation of control-flow that can capture programs with dynamic concur-
rency (including those with shared memory) and a general definition of dataflow
analysis problems for these programs has not been formulated in the literature
(see the end of this section for details on related work).

The goals of this paper are (a) to develop a formal control-flow model for
programs using Petri nets, (b) to propose a novel definition of dataflow analyses
based on causal flows in a program, (c) to develop algorithms for solving causal
flow analyses when the domain of flow facts is a finite set D by exploring the
partially-ordered runs of the program as opposed to its interleaved executions,
and (d) to provide provably efficient algorithms for the class of distributive CCD
problems, and support the claim with demonstrative experiments. The frame-
work we set forth in this paper is the first one we know that defines a formal
general definition of dataflow analysis for concurrent programs.

We first develop a Petri net model that captures the control flow in a con-
current program, and give a translation from programs to Petri nets that ex-
plicitly abstracts data and captures the control flow in the program. These nets,
called control nets, support dynamic concurrency, and can model concurrent
constructs such as lock-synchronizations and shared variable accesses. In fact,
we have recently used the same model of control nets to model and check atom-
icity of code blocks in concurrent programs [7]. We believe that the control net
model is an excellent candidate for capturing control flow in concurrent pro-
grams, and can emerge as the robust analog of control-flow graphs for sequential
programs.

The causal concurrent dataflow (CCD) framework is in the flavor of a meet-
over-all-paths formulation for sequential programs. We assume a set of dataflow
facts D and each statement of the program is associated with a flow transformer
that changes a subset of facts, killing some old facts and generating new facts.
However, we demand that the flow transformers respect the concurrency in the
program: we require that if two independent (concurrent) statements transform
two subsets of facts, D and D', then the sets D and D’ must be disjoint. For
instance, if there are two local variable accesses in two different threads, these
statements are independent, and cannot change the same dataflow fact, which is
a very natural restriction. For example, if we are tracking uninitialized variables,
two assignments in two threads to local variables do affect the facts pertaining
to these variables, but do not modify the same fact. We present formulations of
most of the common dataflow analysis problems in our setting.

The structural restriction of requiring transformers to respect causality en-
sures that dataflow facts can be inferred using partially ordered traces of the
control net. We define the dataflow analysis problem as a meet over partially
ordered traces that reach a node, rather than the traditional meet-over-paths
definition. The meet-over-traces definition is crucial as it preserves the con-
currency in the program, allowing us to exploit it to solve flow analysis us-
ing partial-order based methods, which do not explore all interleavings of the
program.

104 A. Farzan and P. Madhusudan

Our next step is to give a solution for the general causal dataflow analy-
sis problem when the set of of facts D is finite by reducing the problem to a
reachability problem of a Petri net, akin to the classic approach of reducing
meet-over-paths to graph reachability for sequential recursive programs [21].
Finally, the reachability/coverability problem is solved using the optimized
partial-order unfolding [166] based tool called PEP [9].

For the important subclass of distributive dataflow analysis problems, we de-
velop a more efficient algorithm for checking flows. If IV is the control net of a
program and the size of its finite unfolding is n, we show that any distributive
CCD problem over a domain D of facts results in an augmented net of size n|D|
(and hence in an algorithm working within similar bounds of time and space).
This is a very satisfactory result, since it proves that the causal definition does
not destroy the concurrency in the net (as that would result in a blow-up in
n), and that we are exploiting distributivity effectively (as we have a linear de-
pendence on |D|). The analogous result for sequential recursive programs also
creates an augmented graph of size n|D|, where n is the size of the control-flow
graph.

Related Work. Although the majority of flow analysis research has focused on
sequential software [IITT720], flow analysis for concurrent software has also
been studied to some extent. Existing methods for flow-sensitive analyses have
at least one of the following restrictions: (a) the programs handled have simple
static concurrency and can be handled precisely using the union of control flow
graphs of individual programs, or (b) the analysis is sound but not complete,
and solves the dataflow problem using heuristic approximations.

A body of work on flow-sensitive analyses exists in which the model for the pro-
gram is essentially a collection of CFGs of individual threads (tasks, or compo-
nents) together with additional edges among the CFGs that model inter-thread
synchronization and communication [I5JI8/22]. These analyses are usually re-
stricted to a class of behaviors (such as detecting deadlocks) and their models
do not require considering the set of interleavings of the program. More general
analyses based on the above type of model include [I2] which presents a unidirec-
tional bit-vector dataflow analysis framework based on abstract interpretation
(where the domain D is a singleton). This framework comes closest to ours in
that it explicitly defines a meet-over-paths definition of dataflow analysis, can
express a variety of dataflow analysis problems, and gives sound and complete
algorithms for solving them. However, it cannot handle dynamic synchronization
mechanisms (such as locks), and the restriction to having only one dataflow fact
is crucially (and cleverly) used, making multidimensional analysis impossible.
For example, this framework cannot handle the problem of solving uninitialized
variables. See also [23] for dataflow analysis that uses flow along causal edges
but disallows loops in programs and requires them to have static concurrency.
The works in [I3JI4] use the extension of the static single assignment form [3]
for concurrent programs with emphasis on optimizing concurrent programs as
opposed to analyzing them.

Causal Dataflow Analysis for Concurrent Programs 105

In [], concurrent models are used to represent interleavings of programs,
but the initial model is coarse and refined to obtain precision, and efficiency is
gained by sacrificing precision. Petri nets are used as control models for Ada
programs in [5], although the modeling is completely different form ours. In [2],
the authors combine reachability analysis with symbolic execution to prune the
infeasible paths in order to achieve more effective results.

This paper presents only the gist of the definitions and proofs. For more
detailed definitions of Petri nets, unfoldings, the framework for backward flow
analyses and the non-distributive framework, for further examples and detailed
proofs, we refer the reader to the technical report [§].

2 Preliminaries

A Simple Multithreaded Language. We base our formal development on the
language SML (Simple Multithreaded Language). Figure [presents the syntax
of SML. The number of threads in an SML program is fixed and preset. There
are two kinds of variables: local and global, respectively identified by the sets
LVar and GVar. All variables that appear at the definition list of the program
are global and shared among all threads. Any other variable that is used in a
thread is assumed to be local to the thread.

We assume that all variables are integers and are initialized to zero. We use
small letters (capital letters) to denote local (global, resp.) variables. Lock is a
global set of locks that the threads can use for synchronization purposes through
acquire and release primitives. The semantics of a program is the obvious one
and we do not define it formally.

P ::= defn thlist (program)
thlist ::= null | stmt || thlist (thread list)
defn ::= int Y | lock [| defn ; defn (variable declaration)
stmt ::= stmt ; stmt | z := e | skip

while (b) { stmt } | acquire(l) | release(l)

if (b) { stmt } else { stmt } (statement)
e i|lz|Y |etel|lexe|efe (expression)
b::=true | false | eope|bVb| b (boolean expression)
ope{<, <> 2,=1=}

x € LVar, Y € GVar, i € Integer, | € Lock
Fig. 1. SML syntax
Petri Nets and Traces

A Petri net is a triple N = (P,T, F), where P is a set of places, T (disjoint
from P) is a set of transitions, and F C (P x T) U (T x P) is the flow relation.

106 A. Farzan and P. Madhusudan

For a transition ¢ of a (Petri) net, let *t = {p € P|(p,t) € F'} denote its set of
pre-conditions and t* = {p € P|(t,p) € F} its set of post-conditions. A marking
of the net is a subset M of positions of Pl A marked net is a structure (N, Mp),
where N is a net and My is an initial marking. A transition ¢ is enabled at a
marking M if *¢ C M. The transition relation is defined on the set of markings:
M —% M if transition ¢ is enabled at M and M’ = (M*t)Ut*. Let —— denote
the reflexive and transitive closure of —. A marking M’ covers a marking M
if M C M’'. A firing sequence is a finite sequence of transitions t1ts ... provided
we have a sequence of markings MyM; ... and for each i, M; oni M;11. We
denote the set of firing sequences of (N, My) as F\S(N, Mp). Given a marked net
(N, My), N = (P,T, F), the independence relation of the net Iy is defined as
(t,t') € I if the neighborhoods of t and ¢’ are disjoint, i.e. (*tUt®*)N(*t'Ut'®) = ().
The dependence relation Dy is defined as the complement of Iy.

Definition 1. A trace of a marked net (N, My) is a labeled poset Tr = (€, <, A)
where &€ is a finite or a countable set of events, = is a partial order on &, called

the causal order, and A : £ — T is a labeling function such that the following
hold:

— Ve,e' € E,e< e =)\(e)DN/\(e’) Events that are immediately causally re-
lated must correspond to dependent transitions.

— Ve, e € E,M(e)DyA(e)) = (e =€’ Ve <e). Any two events with dependent
labels must be causally related.

— If o is a linearization of Tr then o € F'S(N, My).

For any event e in a trace (€,=<,)), define |e = {¢/ € £ | ¢ =< e} and let

Je=le\{e}.

3 The Control Net of a Program

We model the flow of control in SML programs using Petri nets. We call this
model the control net of the program. The control net formally captures the
concurrency between threads using the concurrency constructs of a Petri net,
captures synchronizations between threads (e.g.. locks, accesses to global vari-
ables) using appropriate mechanisms in the Petri net, and formalizes the fact
that data is abstracted in a sound manner.

We describe the main ideas of this construction but skip the details (see [§]
for details). Transitions in the control net correspond to program statements,
and places are used to control the flow, and to model the interdependencies and
synchronization primitives. Figure [illustrates a program and its control net.

! Petri nets can be more general, but in this paper we restrict to l-safe Petri nets
where each place gets at most one token.

2 < is the immediate causal relation defined as: e~ e’ iff e < €’ and there is no event
e’ such that e < e” < ¢’

Causal Dataflow Analysis for Concurrent Programs 107

There is a place [associated to each lock [which initially has a token in it. To
acquire a lock, this token has to be available which then is taken and put back
when the lock is released.

For each global variable Y, there are
n places Yi,..., Y,, one per thread.
Every time the thread T; reads the vari-
able Y (Y appears in an expression), it
takes the token from the place Y; and
puts it back immediately. If T; wants
to write Y (Y is on the left side of an
assignment), it has to take one token
from each place Y;, 1 < j7 < n and
put them all back. This ensures cor-
rect causality: two read operations of
the same variable by different threads
will be independent (as their neighbor-
hoods will be disjoint), but a read and
a write, or two writes to a variable are Fig. 2. Sample Net Model
declared dependent.

acquire(1);
Y := 5; x =Y - 2;
Y := 3;
release(l);

4 Causal Concurrent Dataflow Framework

We now formulate our framework for dataflow analysis of concurrent programs
based on causality, called the CAUSAL CONCURRENT DATAFLOW (CCD) frame-
work.

A property space is a subset lattice (P(D),C, U, L) where D is a finite set of
dataflow facts, 1 C D, and where LI and C can respectively be U and C, or
N and D. Intuitively, D is the set of dataflow facts of interest, L is the initial
set of facts, and U is the meet operation that will determine how we combine
dataflow facts along different paths reaching the same control point in a program.
“May” analysis is formulated using U = U, while “must” analysis uses the LI =N
formulation. The property space of an IFDS (interprocedural finite distributive
subset) problem [21] for a sequential program (i.e. the subset lattice) is exactly
the same lattice as above.

For every transition ¢ of the control net, we associate two subsets of D, D;
and Dj. Intuitively, Dy is the set of dataflow facts relevant at ¢, while D; C
Dy is the subset of relevant facts that ¢ may modify when it executes. The
transformation function associated with ¢, f;, maps every subset of D; to a
subset of Dy, reflecting how the dataflow facts change when ¢ is executed.

Definition 2. A causal concurrent dataflow (CCD) problem is a tuple (N,S, F,
D, D*) where:

— N =(P,T,F) is the control net model of a concurrent program,
- 8= (PD),c,u, L) is a property space,
— D ={D;}ter and D* = {D;} }1cr, where each D, C Df C D.

108 A. Farzan and P. Madhusudan

— F is a set of functions { fi}ier : 2Pt — 2P+ such that:
(*) V.t (t,t)) € Iy = (DyN D} = Dy N Dy =)

We call a CCD problem distributive if all transformation functions in F are
distributive, that is Vf; € F, VX, Y C D, : fi(X UY) = fe(X) U fe(Y).

Remark 1. Condition (*) above is to be specially noted. It demands that for any
two concurrent events e and e’, e cannot change a dataflow fact that is relevant
to e’. Note that if e and €’ are events in a trace such that D@y N D;‘\(e,) is
non-empty, then they will be causally related.

4.1 Meet over All Traces Solution

In a sequential run of a pro- () =0
mity) = t
gram, every event t has at most Dy, = {d, d2}

one predecessor t’. Therefore, dy, dy>didz
the set of dataflow facts that in(ts) = {da}
hold before the execution of ¢ l? Dy, = {d, ds}

(let us call this in(t)) is exactly
the set of dataflow facts that
hold after the execution of
(out(t')). This is not the case
for a trace (a partially ordered
run). Consider the example in Fig. 3. Flow of facts over a trace

Figure Bl Assume ¢; generates

facts dy and ds, to generates ds

and t3 kills de and generates d4. The corresponding D, sets appear in the Figure.
Trying to evaluate the “in” set of t4, we see three important scenarios: (1) ¢4
inherits independent facts ds and d4 respectively from its immediate predecessors
to and t3, (2) t4 inherits fact d; from ¢; which is not its immediate predecessor,
and (3) t4 does not inherit dy from ¢; because t3, which is a (causally) later
event and the last event to modify ds, kills ds.

This example demonstrates that in a trace the immediate causal predecessors
do not specify the “in” set of an event. The indicating event is actually the
(causally) last event that can change a dataflow fact (eg. t3 for fact ds in com-
puting in(t4)). We formalize this concept by defining the operator maxc% (Tr),
for a trace Tr = (E, =, \) as maxck (Tr) = maz<({e |e € E A d € Dy()}). Note
that this function is undefined on the empty set, but well-defined on non-empty
sets because all events that affect a dataflow fact d are causally related due to
(*) in Definition

Remark [1l suggests that for each event e it suffices to only look at the facts
that are in the “out” set of events in |} e (events that are causally before ¢),
since events that are concurrent with e will not change any fact that’s relevant
to e.

4 in(ts) = {d1,ds,ds}
Dy, = {d1,da,ds,dy}

3 And hence D: N Dy = 0.

Causal Dataflow Analysis for Concurrent Programs 109

Definition 3. For any trace Tr = (E, =X, \) of the control net and for each event
e € E, we define the following dataflow sets:

{ ™€) = Ugepy, (o0t (mazc (1 e)) 1 {a))
out™ (e) = face)(in'"(e) N Dy(ey)

where in ™7 (e) (respectively out ™" (e)) indicates the set of dataflow facts that hold
before (respectively after) the execution of event e of trace Tr.

In the above definition, mazc® (|)) may be undefined (if |} e = @), in which
case we assume in " (e) evaluates to the empty set.

We can now define the meet over all traces solution for a program Pr,
assuming the 7 (N) denotes the set of all traces induced by the control net N.

Definition 4. The set of dataflow facts that hold before the execution of a tran-
sition t of a control net N is MOT (t) = Uprer(ny,ce Tra(e)=t inT"(e).

The above formulation is the concurrent analog of the meet-over-all-paths formu-
lation for sequential programs. Instead of the above definition, we could formu-
late the problem as a meet-over-all-paths problem, where we take the meet over
facts accumulated along the sequential runs (interleavings) of the concurrent
program. However, due to the restriction (*) in Definition 2] we can show that
the dataflow facts accumulated at an event of a trace is precisely the same as that
accumulated using any of its linearizations. Consequently, for dataflow problems
that respect causality by satisfying the condition (*), the meet-over-all-paths
and the meet-over-traces formulations coincide. The latter formulation however
yields faster algorithms based on partial-order methods based on unfoldings to
solve the dataflow analysis problem.

4.2 Formulation of Specific Problems in the CCD Framework

A wide variety of dataflow analysis problems can be formulated using the CCD
framework, including reaching definitions, uninitialized variables, live variables,
available expressions, copy constant propagation, very busy expressions, etc.
Some of these are backward flow analysis problems that can be formulated using
an adaptation of CCD for backward flows. Due to lack of space, we detail only
a couple of representative forward flow problems here; formulation of several
others, including formulation of backward flows can be found in [§].

Reaching Definitions. The reaching definitions analysis determines: “For each
control point, which relevant assignments may have been made and not over-
written when program execution reaches that point along some path 7. The rel-
evant assignments are the assignments to variables that are referred to in that
control point. Given the control net N = (P,T,F) for a program Pr, de-
fine Defs = {(v,t) | t € T,v € (GVar U LVar), and v is assigned in ¢t}. The

110 A. Farzan and P. Madhusudan

property space is (Defs, C,U, (), where presence of (v,t) in D" (¢') means that
the definition of v at ¢ may reach ¢'.

Let Dy = {(v,t') | v is assigned in t}; Dy = {(v,t') | v is assigned or accessed
by t}.

For each transition ¢ and each set S C Dy:

F(S)(= S if ¢ is not an assignment
tONE S~ [) e Ty U {(v,t)} iftis of the form v := e

The construction of the control net ensures that two accesses of a variable v where
one of them is a write, are dependent (neighborhoods intersect). This guarantees
that the condition (*) of Definition [holds, i.e. our formulation of reaching-
definitions ensures that information is inherited only from causal predecessors.
Note that the above formulation is also distributive.

Available Expressions. The available expressions analysis determines: “For
a program point containing x := Exp(x1,...,x) whether Exp has already been
computed and not later modified on all paths to this program point”.
In the standard (sequential) formulation of available expres-
sions analysis, dataflow facts are defined as pairs (¢, Exp),
where Ezp is computed at ¢. This formulation does not work T T
for the concurrent setting. To see why consider the trace on
the right where x is a local variable in T and Y is a global
variable. Events es and e3 are independent (concurrent), but
they both can change (kill) the dataflow fact associated with
x + Y, which is not in accordance with the condition (*) of
Definition 2l The natural remedy is to divide this fact into
two facts, one for x and another for Y. Let us call these two
facts x +Y:x and x + Y : Y. The fact x + Y : x (respectively
x+Y :Y) starts to hold when the expression x + Y is com-
puted, and stops to hold when a definition to x (respectively Y) is seen. The
problem is that x + Y holds when x4+ Y : x holds and x+ Y : Y holds, which
makes the framework non-distributive. Although we can solve non-distributive
problems in the CCD framework (see Appendix), distributive problems yield
faster algorithms (see Section [Hl).

The analysis can however be formulated as a distributive CCD problem by
looking at the dual problem; that is, for unavailability of expressions. The
dataflow fact x + Y indicates the expression being unavailable, and accordingly
the presence of x + Y :x or x + Y : Y can make it hold. We are now in a distrib-
utive framework. Assume EXP presents the set of all expressions appearing in
the program code, and define D = {exp : x; | exp € EXP A z; appears in exp}.
The property space is the subset lattice (D, C,U, D), where presence of exp
in D™ (¢') means that ezp is unavailable at t. We have D; = D; = {eap :
x | x is assigned in ¢ or exp appears in t}. For each transition ¢ and each set
S CDh:

Causal Dataflow Analysis for Concurrent Programs 111

S t is not an assignment
fr(S) =< SU {exp' : x| Vexp' € EXP,xz € V(exp')}
—{exp:y|yeV(iexp)} tis x:= exp

where V' (ezp) denotes the set of variables that appear in ezp.

5 Solving the Distributive CCD Problem

In this section, we show how to solve a dataflow problem in the CCD framework.
The algorithm we present is based on augmenting a control net to a larger net
based on the dataflow analysis problem, and reducing the problem of checking
whether a dataflow fact holds at a control point to a reachability problem on
the augmented net. The augmented net is carefully constructed so as to not
destroy the concurrency present in the system (crucially exploiting the condition
(*) in Definition [2). Reachability on the augmented net is performed using net
unfoldings, which is a partial-order based approach that checks traces generated
by the net as opposed to checking linear runs.

Due to space restrictions, we present only the solution for the distributive
CCD problems where the meet operator is union, and we prove upper bounds
that compare the unfolding of the augmented net with respect to the size of the
unfolding of the original control net.

In order to track the dataflow facts, we enrich the control net so that each
transition performs the transformation of facts as well. We introduce new places
which represent the dataflow facts. The key is then to model the transformation
functions, for which we use representation relations from [21].

Definition 5. The representation relation of a distributive function f : 2P —
2P (D CD)is Ry C (DU{L})x (DU{L}), a binary relation, defined as follows:

Ry={(L, L)} U {(L,d)|de f@®)} v {(dd)|d e f{d)A d¢&f(0)}
The relation Ry captures f faithfully in that we can show that f(X) = {d' €
D|(d,d') € Ry, where d= 1 or d € X}, for any X C D.

Given a CCD framework (N, S, F, D, D*) with control net N = (P, T, F), we
define the net representation for a function f; as below:

Definition 6. The net representation of fi is a Petri net Ny, = (Py,,Ty,, Fy,)
defined as follows:

— The set of places is Py, =*tUt* U{L,, | m € [L,n]} UUy ep, {Pisp;} where
a token in p; means the dataflow fact d; holds, while a token in p, means
that d; does not hold, and n is the number of dataflow facts.

— The set of transitions Ty contains exactly one transition per pair (d;,d;) €
Ry, , and is defined as:

Ty, = {SEJ_,J_)} U {Siél,j)| (L,d;) € Rff,} U {32”)‘ (di, dj) € Rff,}

Note that if Dy = () then Ty, = {SEJ_,J_)}'

112 A. Farzan and P. Madhusudan

— The flow relation is defined as follows:

Fro= U (Uteor v Utemn) v U {onstnh G m)

s€Ty, “~pe°t pEt® dr €Dy

o U ({@msteatteTu} u {6t n}

(J_,dj)ER‘ft
U U {(kasﬁ,j))} U U {(sfi,j)vpk)})
dx€eD, kit

0 U ({005t Gleann s G})

(dj dj)ERf,

i#]

U U ({(pivsfi,i))a(Szi,i)vpi)} >

(di,di)ERy,

The idea is that each transition sfz i) is a copy of transition ¢ that, besides

simulating ¢, models one pair (d;, d;) of the relation Ry,, by taking a token out
of place p; (meanwhile, also checking that nothing else holds by taking tokens out
of each p,, k # i) and putting it in p; (also returning all tokens p;,, k # j). Thus
if d; holds (solely) before execution of ¢, d; will hold afterwards. The transitions
si ; generate new dataflow facts, but consume the token L, associated with the
thread. We will engineer the net to initially contain only one L, marking (for
some thread m), and hence make sure that only one fact is generated from L.

For every t, transitions szi)j) are in conflict since they have ®t as common
predecessors. This means that only one of them can execute at a time, gener-
ating a single fact. If we assume that initially nothing holds (i.e., initial tokens
are in every p,’s and no initial tokens in any of the p;’s), then since each tran-
sition consumes one token and generates a new token, the following invariant
always holds for the system: “At any reachable marking of the augmented net,
exactly one position p; corresponding to some dataflow fact d; holds”. We use
this observation later to argue the complexity of our analysis.

Definition 7. The augmented marked net N7 of a CCD problem (N,S,F)
is defined as Ufe]-‘ Ny where the union of two nets Ny = (P1,Th, F1) and No =
(P2, T, Fy) is defined as Ny U Ny = (PyU Py, Ty UTs, Fy UFy). It is assumed that
Ny’s have disjoint set of transitions, and only the common places are identified
in the union. Furthermore we add a mew position p*, make each p; initial, and
also introduce n initial transitions t},, one for each thread, that removes p* and

puts a token in L,, and a token in the initial positions of each thread.

The above construction only works when L = (). When L = Dy, for some Dy C
D, we will introduce a new initial set of events (all in conflict) that introduce
nondeterministically a token in some p; € Dy and remove p;.

The problem of computing the MOT solution can be reduced to a coverability
problem on the augmented net. To be more precise, fact d; may hold before the

Causal Dataflow Analysis for Concurrent Programs 113

execution of transition ¢ of the control net if and only if {p;,p:} is coverable
from the initial marking of the control net where p; is the local control place
associated to transition ¢ in its corresponding thread.

Theorem 1. A dataflow fact d; holds before the execution of a transition t in
the control net N of a program if and only if d; € D} and the marking {p;, p+}
is coverable from the initial marking in the augmented net NS7 constructed
according to Definition[7

Checking coverability: While there are many tools that can check reachabil-
ity /coverability properties of Petri nets, tools that use unfolding techniques [16/6]
of nets are particularly effective, as they explore the state space using partially
ordered unfoldings and give automatic reduction in state-space (akin to partial-
order reduction for model checking of concurrent systems). We assume the reader
is familiar with net unfoldings and refer to [6] for details.

Complexity of distributive CCD: Algorithms for Petri nets which use finite
unfoldings essentially produces a finite unfolding of the net, from which cover-
ability of one position can be checked in linear time. For every transition t’ € T,
and every fact d; € Dy, we can create a new transition whose preconditions are
those of ¢’ plus p;, and outputs a token in a new position (¢, d;). By Theorem /]
coverability of this single position is equivalent to fact d; holding at ¢. Further-
more, we can argue that the unfolding of this net introduces at most n|D| new
events compared to the unfolding of the augmented net.

Let us now analyze the size of the unfolding of the augmented net in terms of
the size of the unfolding of the original control net; let us assume the latter has
n events. We can show that (a) every marking reachable by a local configuration
of the control net has a corresponding event in its finite unfolding that realizes
this marking, and (b) that for every marking reached by a local configuration
of the control net, there are at most |D| corresponding local configurations in
the augmented net (at most one for each dataflow fact), and this covers all local
configurations of the augmented net. Since the number of events in the unfold-
ing is bounded by the number of markings reachable by local configurations, it
follows that the size of the unfolding of the augmented net is at most |D| times
that of the control net. This argues the efficacy of our approach in preserving
the concurrency inherent in the control net and in exploiting distributivity to
its fullest extent.

Theorem 2. Let (N,S,F) be a distributive CCD problem, with S = (P(D), C
,U, L). Let n be the size of the unfolding of N. Then the size of the unfolding
of the augmented net N7 (and even the complexity of checking whether a fact
holds at a control point) is at most O(n|D)).

6 Experiments

We have applied the techniques from Section[Blto perform several dataflow analy-
ses for concurrent programs. Unfortunately, there is no standard benchmark for

114 A. Farzan and P. Madhusudan

concurrent dataflow programs. We have however experimented our algorithms
with sample programs for the primary dataflow analysis problems, and studied
performance when the number of threads is increased.

The motive of the experiments is to exhibit in practice the advantages of
concurrent dataflow that exploit the causal framework set forth in this paper.
While the practical efficacy of our approach on large programs is still not vali-
dated, we believe that setting up a general framework with well-defined problems
permitting reasonable algorithms is a first step towards full-scale flow analysis.
Algorithms that work on large code may have to implement approximations and
heuristics, and we believe that the our framework will serve as a standard for
correctness.

In many of our examples, there is an exponential increase in the set of reach-
able states as one increases the number of threads, but the partial order methods
inherent to these techniques substantially alleviate the problem. We use the PEP
tool [9] to check the coverability property on the augmented net to answer the
relevant coverability queries.

For each example, we have included the sizes of the unfolding for the program’s
control net and of the augmented net (see Table[I]). The construction time refers
to the time to build the unfolding, and the checking time refers to the time for
a single fact checking. Note the huge differences between the two times in some
cases, and also note that the unfolding is only built once and is then used to
answer several coverability queries. All experiments were performed on a Linux
machine with a 1.7GHz processor and 1GB of memory. The numbers are all in
seconds (with a precision of 0.01 seconds).

Uninitialized Variables. This set of examples contains a collection of n threads
with n global variables X°, ..., X"™. One uninitialized variable X" in one thread can
consequently make all X’s uninitialized. Concurrency results in many possible
interleavings in this example, a few of which can make a certain variable X7
uninitialized.

Reaching Definitions. This example set demon-
strates how our method can successfully handle syn-
chronization mechanisms. There are two types of |acauire(l); acquire(1)
threads: (1) those which perform two consequent z - ; A
writes to a global variable Y, and (2) those which |release();
perform a read of Y. There are two variations of this

example: (1) where none of the accesses is protected

by a lock, which we call RD, and (2) where the read, and the two writes com-
bined are protected by the same lock, which we call RDL (the code on the right).
The main difference between the two versions is that Y := 1 will reach the read
in the lock-free version, but cannot reach it in the presence of the locks. In a
setting with one copy of T’ and n copies of T, there are 2n definitions where
only n of them can reach the line x := Y+ 1 of T".

T T

release(1l)

Causal Dataflow Analysis for Concurrent Programs 115

Table 1. Programs and Performances

Example |D| #Threads Unfolding Unfolding Checking Construction
Control Net Augmented Net Time (sec) Time (sec)

Uv(10) 11 11 906 4090 < 0.01 <0.01
UV(20) 21 21 3311 16950 < 0.01 0.70
UV(60) 61 61 40859 156390 0.01 60.11
RD(3) 4 6 410 1904 < 0.01 0.03
RD(4) 5 8 1545 9289 0.01 15
RD(5) 6 10 5596 41186 0.01 133.16
RDL(3) 6 4 334 1228 < 0.01 0.01
RDL(4) 8 5 839 3791 < 0.01 29
RDL(5) 10 6 2024 10834 < 0.01 5.35
RDL(6) 12 7 4745 29333 0.01 121.00
AE(50) 2 50 250 650 < 0.01 < 0.01
AE(150) 2 150 750 1950 < 0.01 0.34
AE(350) 2 350 1750 4550 < 0.01 4.10

Available Expressions. The example set AE shows how the unfolding method
can fully benefit from concurrency. The threads here do not have any
dependencies. Each thread defines the same expression X + Y twice, and there-
fore, the expression is always available for the second instruction of each thread.
Table [shows that in the case of zero dependencies, the size of the unfolding
grows linearly with the number of threads (understandably so since new threads
do not introduce new dataflow facts).

7 Conclusions

The main contribution of this paper lies in the definition of a framework that
captures dataflow analysis problems for concurrent program using partial orders
that preserves the concurrency in the system. The preserved concurrency has
been exploited in the partial-order based analysis, but could instead have been
exploited in other ways, for example using partial-order reduction strategies as
those used in SPIN.

As for future directions, the first would be to study local or compositional
methods to solve the CCD problems and deploy them on large real world pro-
grams. This would have to handle (approximately) complex data such as pointers
and objects. Our algorithms do not work for programs with recursion, and it is
well known that dataflow analysis for concurrent programs with recursion quickly
leads to undecidability. Structural restrictions like nested locking (see [11]) would
be worth studying to obtain decidable fragments. Studying a framework based
on computing minimal fizpoints for concurrent programs would be also inter-
esting. Extending our approach to decide flow problems with infinite domains
of finite height is challenging as well (they can be handled in the sequential
setting [20]).

116

A. Farzan and P. Madhusudan

References

1.

2.

3.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

A. T. Chamillard and Lori A. Clarke. Improving the accuracy of petri net-based
analysis of concurrent programs. In ISSTA, pages 24-38, 1996.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451-490, 1991.

. M. Dwyer, L. Clarke, J. Cobleigh, and G. Naumovich. Flow analysis for verifying

properties of concurrent software systems, 2004.

. Matthew B. Dwyer and Lori A. Clarke. A compact petri net representation and

its implications for analysis. IEEE Trans. Softw. Eng., 22(11):794-811, 1996.

. J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s unfolding

algorithm. Formal Methods in System Design, 20:285-310, 2002.

. A. Farzan and P. Madhusudan. Causal atomicity. In CAV, LNCS 4144, pages 315

— 328, 2006.

. A. Farzan and P. Madhusudan. Causal dataflow analysis for concurrent programs.

Technical Report UIUCDCS-R-~2007-2806, CS Department, UTUC, 2007.

. B. Grahlmann. The PEP tool. In CAV, pages 440-443, 1997.

M. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc., 1977.

V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via
locks. In CAV, volume LNCS 3576, pages 505-518, 2005.

Jens Knoop, Bernhard Steffen, and Jiirgen Vollmer. Parallelism for free: Efficient
and optimal bitvector analyses for parallel programs. TOPLAS, 18(3):268-299,
May 1996.

Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static single
assignment form and constant propagation for explicitly parallel programs. In
Languages and Compilers for Parallel Computing, pages 114-130, 1997.

Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler algorithms for
parallel programs. In PPoPP, pages 1-12, 1999.

Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analysis. In
PPOPP, pages 129-138, 1993.

K. McMillan. A technique of state space search based on unfolding. Formal Methods
in System Design, 6(1):45-65, 1995.

S. S. Muchnick. Advanced Compiler Design and Imlementation. Morgan Kauf-
mann, 1997.

Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm for
detecting all pairs of statements that may happen in parallel. In SIGSOFT/FSE-6,
pages 24-34, 98.

F. Nielson and H. Nielson. Type and effect systems. In Correct System Design,
pages 114-136, 1999.

T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Sci. Comput. Program.,
58(1-2):206-263, 2005.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, pages 49-61, 1995.

Alexandru Salcianu and Martin Rinard. Pointer and escape analysis for multi-
threaded programs. In PPoPP, pages 12-23. ACM Press, 2001.

Eric Stoltz and Michael Wolfe. Sparse data-flow analysis for dag parallel programs,
1994.

Type-Dependence Analysis and Program
Transformation for Symbolic Execution

Saswat Anand, Alessandro Orso, and Mary Jean Harrold

College of Computing, Georgia Institute of Technology
{saswat,orso,harrold}@cc.gatech.edu

Abstract. Symbolic execution can be problematic when applied to real
applications. This paper addresses two of these problems: (1) the con-
straints generated during symbolic execution may be of a type not han-
dled by the underlying decision procedure, and (2) some parts of the
application may be unsuitable for symbolic execution (e.g., third-party
libraries). The paper presents type-dependence analysis, which performs
a context- and field-sensitive interprocedural static analysis to identify
program entities that may store symbolic values at run-time. This in-
formation is used to identify the above two problematic cases and as-
sist the user in addressing them. The paper also presents a technique
to transform real applications for efficient symbolic execution. Instead
of transforming the entire application, which can be inefficient and in-
feasible (mostly for pragmatic reasons), our technique leverages the re-
sults of type-dependence analysis to transform only parts of the program
that may interact with symbolic values. Finally, the paper discusses the
implementation of our analysis and transformation technique in a tool,
STINGER, and an empirical evaluation performed on two real applications.
The results of the evaluation show the effectiveness of our approach.

1 Introduction

Testing is one of the most commonly used techniques to gain confidence in
the correct behavior of software. Because manual generation of test inputs is
time consuming and usually results in inadequate test suites, researchers have
proposed automated techniques for test-input generation. One of these tech-
niques, symbolic execution, generates test-inputs by interpreting a program over
symbolic values and solving constraints that lead to the execution of a specific
program path. Although symbolic execution was first introduced in the mid
1970s [15], the dramatic growth in the computational power of the average ma-
chine and the availability of increasingly powerful decision procedures in recent
years have renewed interest in using symbolic execution for test-input generation
(e.g., PITTIOR528]).

Despite the fact that symbolic execution is well understood, and performing
symbolic execution on simple programs is straightforward, problems arise when
attempting to symbolically execute real applications. In this paper, we address
two such problems. The first problem concerns the capabilities of the underlying
decision procedure used to check satisfiability and solve path conditions. If the

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 117-[I33] 2007.
© Springer-Verlag Berlin Heidelberg 2007

118 S. Anand, A. Orso, and M.J. Harrold

underlying decision procedure is incapable of (or inefficient in) handling the types
of constraints produced during symbolic execution, users must rewrite parts of
the program so that the offending constraints are not produced. However, this
rewriting requires a user to identify those parts of the program that may generate
problematic constraints, which is a difficult task. The second problem concerns
the flow of symbolic values outside the boundaries of the software being sym-
bolically executed. In these cases (e.g., when a symbolic value is passed as a
parameter to an external library call), the execution must abort because external
code cannot handle symbolic values. In real applications, there can be many in-
stances of this problem, such as calls to native methods in Java, unmanaged code
in the .NET framework, and third-party pre-compiled libraries. To address this
issue, users must replace the calls to external components that may be reached
by symbolic values with calls to stubs that model the components’ behaviors.
Like the first problem, performing this transformation requires manual interven-
tion: the users must identify the external calls that may be problematic before
actually performing symbolic execution.

In some studies on symbolic execution [2528], the two problems do not arise
because of the types of programs used (e.g., implementations of data structures).
In other studies where these problems arise, researchers have taken various ap-
proaches to address them. Some researchers proposed approaches that replace
symbolic values with concrete values whenever the symbolic values cannot be
handled by the decision procedure or by an external component [T0/19]; these
approaches make the technique incomplete, in that it may fail to generate test in-
puts for a feasible program path. Other researchers proposed approaches based
on “trial and error” [3]—every time the symbolic execution cannot continue
because of a call to an external-library function with one or more symbolic para-
meters, the users are notified and must modify the code appropriately; although
this solution may eventually lead to a successful execution, it can be inefficient
when the interaction with the user is frequent. Yet other researchers proposed
to use decision procedures for bit vectors that use boolean satisfiability (SAT)
solvers [2]. Such decision procedures (e.g., STP [9]) can theoretically handle
most types of constraints that may arise in a program under the assumption of
finite representation of numbers. However, they are inefficient in handling linear
integer arithmetic constraints, when compared to decision procedures specifically
designed for this domain, such as Omega [I7] and Yices [6].

To facilitate symbolic execution of real applications, where the previously de-
scribed problems are frequently encountered, we present a new approach. Our
approach is based on the insight that both of these problems are caused by
the flow of symbolic values to problematic variables, such as parameters of li-
brary calls or operands of expressions that cannot be handled by the underlying
decision procedure. Our approach is based on a novel static analysis, called
type-dependence analysis, that identifies problematic variables before perform-
ing symbolic executions. Our type-dependence analysis formulates the problem
of identifying variables that may assume symbolic values as a value-flow analysis
problem. The analysis is context- and field-sensitive, which has the advantage

Type-Dependence Analysis and Program Transformation 119

of providing fairly precise results. The benefit of our analysis is that it can
automatically detect parts of the program that may be problematic for sym-
bolic execution (e.g., a modulo operation that involves at least one symbolic
operand). For any such part, the analysis reports to the users the identified prob-
lem, together with contextual information, to help them understand the issue
and perform necessary program changes.

In this paper, we also present a technique that leverages the results of the
analysis to transform applications and prepare them for symbolic execution.
The basic idea behind the transformation is to replace concrete types with sym-
bolic types and concrete operators with operators that work over symbolic val-
ues [T4]. Naively applying such transformation to the entire application leads
to two problems. First, in practice, execution engines such as the Java virtual
machine make implicit assumptions about the internal structures of some com-
ponents. Transforming such components is thus problematic. Second, symbolic
operations are more expensive than their concrete counterparts, even when they
operate on concrete values (the extra overhead is incurred in checking whether
a value is symbolic or concrete). Therefore, transforming those components of
the program that may not interact with symbolic values introduces inefficiencies.
Because type-dependence analysis can identify which variables may be symbolic,
our technique avoids transforming parts of the code that have no interactions
with symbolic values, thus improving both applicability and efficiency of sym-
bolic execution.

To evaluate our type-dependence analysis and transformation technique, we
implemented them in a tool, called STINGER, that works on Java and is integrated
in Java Pathfinder [I3], and used the tool to perform an empirical evaluation on
two real programs. To the best of our knowledge, the programs that we used are
considerably larger than those used in previous studies on symbolic execution.
The results of the studies show that our analysis can be effective in (1) statically
identifying areas of the code that would be problematic for symbolic execution,
(2) providing useful feedback to the users to guide them in the resolution of the
problems, and (3) limiting the transformation necessary for symbolic execution.

The main contributions of the paper are

— A context- and field-sensitive static flow analysis that can identify the vari-
ables in a program that may hold symbolic values, given a set of symbolic
inputs. The analysis results enable static identification of program segments
that are potentially problematic for symbolic execution and can guide users
in transforming the program to eliminate the problems.

— A general transformation technique that leverages the type-dependence analy-
sis to transform programs into “symbolic programs” (i.e., programs whose
execution essentially performs symbolic execution of the original program).

— A tool, STINGER, that implements our approach for Java and is integrated
in Java Pathfinder.

— A set of empirical studies, performed on two real programs, whose results
show the usefulness of our approach.

120 S. Anand, A. Orso, and M.J. Harrold

2 Type-Dependence Analysis

This section presents our type-dependence analysis, which computes the set of
program entities that may store symbolic values when a program is symbolically
executed. We target a typical scenario in which the user selects a set of variables
to hold symbolic input values for a program and then symbolically executes the
program. In this context, the type of the selected variables and of other variables
that can hold values derived from these selected variables must be symbolic.

public class Object{
public static native Object clone ();

public class M extends Object{

int m;

M(int x){ this.m = x; }

int getM(){ return this.m; }

static native boolean isPrime (int x);

public static void main(String[] arg){
int s = Symbolic.integer ();
M a = new M(s); M b = new M(4);
int p = a.getM(); int q = b.getM();
if (isPrime(p) & q % 3 == 0)

Mc = M) a.clone ();

Fig. 1. Motivating example

Before discussing the details of our analysis, we introduce a motivating ex-
ample that illustrates some of the issues that the analysis can help to address.
Suppose that we want to symbolically execute the Java program shown in Fig.[I]
and that s represents the (symbolic) input to the program (as shown by the
assignment of Symbolic.integer() to s). On initial inspection, the program
contains three potentially-problematic cases: the use of the modulo (%) oper-
ation, which is not supported by many decision procedures; the invocation of
native method clone; and the invocation of native method isPrime. However, a
more careful inspection reveals that the first two cases are not problematic: the
modulo operator never operates on symbolic values and native method clone
can access only fields of class Object Jj, none of which may store symbolic values.
As for the third potentially-problematic case, a symbolic value is passed as an
argument to native method isPrime and is likely to be problematic because the
method expects a concrete value. Our type-dependence analysis can discover
that the first two cases are not problematic but the third case is. For this third
case, the analysis can provide context information to help the user understand
the problem and address it.

We call our analysis type-dependence analysis because it identifies type de-
pendence between variables. We define type dependence as follows: For a given

! This conclusion is based on the common assumption that native methods do not
use dynamic type discovery and thus access only fields of declared types of their
parameters [23].

Type-Dependence Analysis and Program Transformation 121

(assignment,) PYp————
ino - x e pen pe

(b p) P D y D P y

(load) p=o.f ﬁp(iet[f] o

(store) 0.f = x = o Wt

(return) return x = R,, < x, where m is the concerned method

(array-new) a = new t[size]l = a < putliength]

(array-assignl) alil = x = a putlelem]

(array-assign2) p = alil = p & getletem]

(array-length) p = a.length —> p <& getliengtn]

(invocation) x = a.foo(ai,...,an) = = « RfomPfoo —ar,... PL, < an

Fig. 2. Rules for building the type-dependence graph

type-correct program, an entity x is type dependent on an entity y iff x’s type
may need to be changed as a consequence of a change in y’s type to maintain
type correctness. Our type-dependence analysis computes a conservative approx-
imation of the type-dependence relation between a given set of entities and the
other entities in the program. The type-dependence analysis is an instance of
the more general value-flow analysis, which identifies whether the value of an
entity = can flow to an another entity y in the program. In the definition of our
analysis, we leverage techniques for demand-driven interprocedural analysis [12]
and cloning-based interprocedural analysis [27], and techniques that use binary
decision diagrams for scaling interprocedural analysis [TI27].

Type-dependence analysis consists of two phases. The first phase builds a
Type-Dependence Graph (TDG) for the program, which encodes direct type-
dependence information between program entities. The second phase performs
Context-Free Language (CFL) reachability [I8] on the TDG to identify transitive
type dependences.

2.1 Building the TDG

In the first phase, the analysis builds the Type-Dependence Graph (TDG), a
directed graph (N, E). N is a set of nodes, each of which represents one of
several entities: a static field, a local variable of a method, a field of primitive
type, a parameter of a method, or the return value of a method. E is a set
of directed edges. An edge x « y in E indicates that there is a direct type
dependence between the entity represented by y and the entity represented by
x (i.e., x is directly type-dependent on y).

To build the TDG, our analysis processes each program statement once and
adds an edge to the graph for each relevant statement, according to the rules
shown in Fig. 2l Note that the rules apply only to non-constant right-hand side
values—the analysis does not add nodes or corresponding edges to the TDG for
constant entities. In the figure, o.f represents field f of object o; P}, represents
the i*" parameter of method m; R,, represents the return value of method m.

122 S. Anand, A. Orso, and M.J. Harrold

p—zx, x € Sym
p € Sym

et ut .
getthl oy 22 0 5 = o, alias(y,q), @ € Sym

p € Sym

Fig. 3. Context-insensitive inference rules for type dependence analysis.

For the definition of the rules, the analysis treats arrays as objects with two
fields, elem and length, that represent all array elements and the length of the
array, respectively. For space reasons, rules for statements involving static field
references, unary operations, and casting are not shown; they are analogous to
the assignment rule.

2.2 Performing CFL-Reachability on the TDG

In the second phase, the analysis performs CFL-reachability [I8] on the TDG
with a user-specified set of variables selected to be symbolic, Symg, and computes
set Sym, which contains all local variables, static fields, formal parameters, and
return values of scalar types that are type-dependent on variables in Symy.
Instance fields and entities of array-types that are type-dependent on variables in
Symg are then computed from Sym; due to space constraint, this is described in
Appendix[Al The analysis initializes Sym to Symg and applies a set of inference
rules until a fix point on Sym is reached. For clarity, we first present a context-
insensitive version of our analysis and then describe how it can be extended to
be context-sensitive.

The context-insensitive version of our analysis is represented by the two infer-
ence rules in Fig. Bl The first rule states that an entity p is added to the Sym set
if there is another entity « in Sym on which p is directly type dependent. The
second rule captures transitive type dependence through heap aliases. It states
that entity p must be added to Sym if there is another entity x in Sym and
two object references y and ¢ such that (1) p is directly type dependent on a
field f of ¢, (2) the same field f of y is directly type dependent on z, and (3) y
and ¢ may point to the same object (expressed using the notation alias(y, q)).
Without loss of generality, our analysis assumes that may-alias information is
computed on demand by some points-to analysis (e.g., [22]).

Our analysis is field-sensitive—in the second rule, the labels get[f1] and put]fa]
must refer to the same fields. This is in contrast to a field-based analysis, which
does not distinguish between different fields of an object. Field sensitivity cannot
be achieved through simple reachability. It requires our analysis to perform CFL
reachability by matching get[] and put[] labels (two matching labels must refer to
the same field), while identifying all nodes reachable from the initial set Symy,

The context-insensitive analysis described above may compute unnecessarily-
large Sym sets. In the example in Fig. [I, for instance, the analysis would not

Type-Dependence Analysis and Program Transformation 123

distinguish between the two calls to the getM method and, thus, would not be
able to detect that variable q is not type-dependent on variable s. To improve the
precision of the analysis, we define a context-sensitive version of the TDG using
an approach similar to method cloning [27]. First, we create multiple nodes for
each entity—one for each calling context of the method that contains the entity.
The only exceptions are entities that correspond to global variables (e.g., static
fields in Java) that are represented with a single node in the context-sensitive
TDG. Second, we create copies of the TDG’s edges so that if an edge exists
between two nodes, there is an edge between corresponding (context-specific)
copies of the nodes. Note that each copy of an invocation edge is an inter-context
edge—an edge that connects nodes that belong in different contexts.

Because cloning-based approaches can lead to an exponential explosion in
the size of the graphs, we use Binary Decision Diagrams (BDDs) to represent
context-sensitive TDGs [16J27]. In addition, we adopt the k-CFA approach [21],
which limits the context of a call to the top k elements of the call stack.

After building the context-sensitive TDG, our analysis uses a context-sensitive
version of the inference rules described in Fig. 8] to compute Sym. We obtain
the context-sensitive inference rules by modifying the context-insensitive rules:
we identify each entity in the rule with respect to a specific context c¢. The
context-sensitive version of the first rule in Fig. Bl for instance, is

p¢ — x¢, x°¢ € Sym
p¢ € Sym

3 Program Transformation

One common way to perform symbolic execution of a program is to first trans-
form the program so that it can operate on both symbolic and concrete values,
and then execute itB A naive program transformation technique would change
the types of all program entities to symbolic types, and change all operations
over concrete values to operations over symbolic values. In practice, this ap-
proach is not feasible for two reasons. First, execution engines typically make
implicit assumptions about the types of some entities (e.g., fields of certain
classes), and these assumptions would be violated by the transformation. Sec-
ond, treating all variables in a program as symbolic can be inefficient (compared
to having only a small subset of symbolic variables and executing parts of the
programs not affected by those variables normally). In this section, we present a
program-transformation technique that leverages the results of type-dependence
analysis to transform, in an automated way, only a subset of the program. By
doing this, our technique mitigates (when it does not completely eliminate) the
two problems mentioned above.

Our technique supports two operators that enable selective program trans-
formations: box and unbox. The box operator converts a concrete value to a
corresponding symbolic value. The unbozx operator converts a symbolic value

2 There are also other approaches not based on transformation (e.g., [58]).

124 S. Anand, A. Orso, and M.J. Harrold

public class M {

int m;
Expression m JPF ;
M(int x) { this(Symbolic. makeSymbolic(x));}
int getM() { return Symbolic. makeConcrete int(getM JPF ());}
static native boolean isPrime (int i);
M(Expression x) { this.m JPF = x; }
Expression getM JPF () { return this.m JPF ; }
static native boolean isPrime JPF (Expression expression);
public static void main(String[] strings) {

M a = new M(Symbolic.symbolic int ());

M b = new M(4);

Expression p = a.getM JPF ();

int q = b.getM();

if (isPrime JPF (p) && q % 3 == 0)

Mc = (M) a.clone();

Fig. 4. Transformed version of the example from Fig. [

created by the box operator to the corresponding concrete value. These opera-
tors are needed to handle program entities that must be of symbolic types for
type correctness, but may store either symbolic and concrete values depending on
contexts. The operators let these entities store (boxed) concrete values whenever
necessary. The technique automatically adds to the program appropriate boxing
and unboxing operators to enable assignments between entities of symbolic and
concrete types. Note that unboxing a symbolic value (i.e., a symbolic value that
is not the result of a boxing operation) would cause a run-time error. However,
the transformation technique guarantees that such a situation will never occur
due to its use of the results of the conservative type-dependence analysis.

Before presenting the formal definition of the transformation, we illustrate
some features of our approach by showing, in Fig. @l the transformed version of
the example program from Fig. [l In the code, Expression represents the type
of symbolic expressions, and methods makeSymbolic and makeConcrete int
represent box and unbox operators, respectively. For each field that may store a
symbolic value, such as m, the transformation adds a new field of symbolic type.
Similarly, for each method that may operate on symbolic values, a new method
is added that may take symbolic values as arguments and/or return symbolic
values. Note that because the analysis determines that variable q can never
store a symbolic value at runtime, q’s type is unchanged, and the % operation
is not replaced by its corresponding symbolic operation. In contrast, p’s type
is changed to Expression because the analysis determines that it may store
a symbolic value. When a symbolic version of a method is created, only those
calls that may pass and/or receive symbolic values are changed to invoke the
new method. In the example, for instance, getM JPF () is called on a because a
symbolic value may be returned by the method at that callsite. Conversely, the
call to getM() on b is unchanged, as only concrete values are returned at the
corresponding callsite.

Type-Dependence Analysis and Program Transformation 125

Source language

I € Local, f € Field, r € RefType
n € NumType n ::= int | short | char | long | byte | float | double

T € Type T :=n | boolean | r | 7]
¢ € Immediate ¢ ::=1 | const
e € Expr e =1 |41 binop iz | unop i | LT | (1) i| {[i]” | I.length™ | new 7]i]

s € Stmt) su=l=c|lf=1i|l[i]" =i

binop e {+7 _7*7 /7 %7:7>727 <7 S7#}
unop € {—,!}

Extension for symbolic execution

le SymLocal, f € SymField

7 € SymType 7 = EXPR | EXPRARRAY | BOOLARRAY | REFARRAY

: € SymImmediate 7 ::= [

€ € SymExpr € = box" (e) | | symbinop(é€1, €2) | symunop i | I.f | cast™(€) |
array get” ([, &) | array len” (1) | new array’ (@)

5 € SymStmt §u=1=¢|l=nunbox (&) | a.f = é | array set™ (I, €1, é2)

symbinop € { plus, minus, mul, div, mod, eq, gt, ge, lt, le, ne}
symunop € { neg, not}

Fig. 5. Source language and its extensions for symbolic execution

3.1 Source and Target Languages

For the sake of clarity, we define our transformation on a subset of Java, referred
to as source language, that contains only those Java features relevant to the
transformation. The transformation of a program in source language produces a
program in target language. Fig.Blpresents the source language and its extensions
for symbolic execution. The target language is the union of the source language
and its extensions.

Both the source and the target languages are statically and explicitly typed
according to Java’s type rules. Types in the source language include all types sup-
ported by Java. The target language supports four symbolic types, namely EXPR,
EXPRARRAY, BOOLARRAY, and REFARRAY, that represent types of symbolic
expressions, arrays of symbolic expressions, arrays of boolean values, and ar-
rays of references, respectively. Each of the symbolic array types can also have
symbolic length. The correspondence between concrete and symbolic types (for
concrete types that have a corresponding symbolic type) is defined by function
stype : Type — SymType.

stype(T) = EXPR 7 € NumType stype([]boolean) = BOOLARRAY

stype([]T) = EXPRARRAY 7 € NumType stype([]r) = REFARRAY

Expressions include local variables, constants, unary and binary operations,
field references, casts, array references, array length and array allocation

126 S. Anand, A. Orso, and M.J. Harrold

expressions. In the source language, 7 represents the element type of array [
in terms I[i](") and I.1ength(™), and the type of field f in term . f(7).

In the target language, there is one syntactic category for each category in
the source language, represented by the same symbol with a tilde on the top.
In addition, for each unary, binary, and comparison operators in the source lan-
guage, the target language provides a corresponding operator that operates on
symbolic values. In the definition of the language extensions, we use the follow-
ing terminology (where 7 denotes the type of array element): array get’ (I, é)
is an operation that returns the &' element of symbolic array l~; array len;(i)
returns the length of lN; new array” (€) allocates a symbolic array of size &; and
array set;(ZN, €1, €2) stores symbolic expression és as the element at index é; of ar-
ray [. The box operator is represented by boz™ (e), which transforms the concrete
value e into the corresponding symbolic value of type 7. Analogously, unboz™ (&)
indicates the transformation of the symbolic value contained in €, of type 7, into
its original concrete value and type.

3.2 Transformation

The transformation is performed in two steps. In the first step, new fields, meth-
ods, and local variables of symbolic types are added to the program. For each
field that may store symbolic values, the transformation adds a new field with
corresponding symbolic type. For each method m that may operate on symbolic
values, the transformation adds a new method mg, which may potentially have
parameters and return value of symbolic types. Also, for each of m’s local vari-
ables v, if v may store symbolic values, a local variable of corresponding symbolic
type is added to mg; otherwise, the original v is added to mg. Finally, all state-
ments of m are moved to ms, and m is transformed into a proxy that invokes
ms and performs boxing and unboxing of parameters and/or return values as
needed. Note that, even if the analysis is context-sensitive, it generates at most
one variant of each method because the results of the analysis are unified over
all contexts.

In the second step of the transformation, statements in the newly-added meth-
ods are transformed according to the rules provided in Fig. [6l Note that Fig.
does not include transformation rules that involve arrays, which are provided
in Fig. [{ (see Appendix A). Each rule defines how a specific statement in the
source language is transformed and is applicable only if the respective guard is
satisfied. The rules use the following notations:

— For a given local variable or field x that may store symbolic values, x repre-
sents the corresponding entity of symbolic type added by the transformation
in the first step. If z cannot store a symbolic value, then x simply represents
the original entity. In particular, if = is a constant, x always represents .

— 7, represent the symbolic type corresponding to a concrete type 7, as defined
by function stype.

— For an expression e of concrete type 7, < e > represents box"(e) (i.e.,, e
boxed as a value of its corresponding symbolic type). For an expression € of
a symbolic type, < é > represents € itself.

Type-Dependence Analysis and Program Transformation 127

Original statement Transformed statement Guard
=1 l=<i>] 1#1 (1)
[l =41 binop ia] [l = boxE"PR(zl binop i2)] L#£ 101 =11,i2 = iz (2)
[l = symbinop(< i1 >,< 142 >)] i1 #41 0ris #iz (3)
[l = unop 1] [l = box™"*(unop i)] l#li=1 (4)
[l = symunop(7)] i F i (5)
(L.f =1 ([.f=<i>] f#f (6)
[l = lo. 7] = <la.f >] i # 1 (7)
[l = unbox” (Iz.f)] L=l f4f ®)
[l = (7) I2] [lh =box" ((7) 12)] h#lh,la=1 (9)
[ll = cast” (l)] A ;ﬁ ll,lz ;ﬁ lo (10)

Fig. 6. Transformation rules for program statements

For space reasons, we discuss transformation rules for only two types of state-
ments: assignments of a local variable or constant to a local variable and assign-
ments of a field to a local variable. According to Rule 1, assignment statements
of the form [= ¢ are transformed only if [may store a symbolic value. If so, a
local variable of symbolic type that corresponds to [, I, is added and becomes
the l-value of the transformed statement. If 7 is a non-constant local variable and
has a corresponding local variable of symbolic type, i, i becomes the r-value of
the transformed statement. Otherwise, if is either a constant or a local variable
without a corresponding local of symbolic type, i’s value is boxed and assigned
to [.

We discuss rules for statements of type I = lo.f(") because they make use
of the unbox operator. There are two rules that involve these statements. In
the first case (Rule 7), l; has a corresponding local of symbolic type, {1, which
becomes the l-value of the transformed statement. If field f has a corresponding
field of symbolic type, f, the value of f of I is assigned to I1; otherwise, the value
of field f of I3 is boxed and assigned to I1. In the second case (Rule 8), where I3
does not have a corresponding local of symbolic type, but f has a corresponding
field of symbolic type, lo.f’s value is unboxed and assigned to [;.

4 Empirical Studies

To assess the effectiveness of our approach, we implemented our type-dependence
analysis and automatic transformation technique in a tool named STINGER
(Symbolic-execution based Test INput GenEratoR), and used STINGER to per-
form a set of empirical studies. STINGER works on Java bytecode, leverages the
SOOT framework [24], and is integrated with Java Pathfinder [I3]. The type-
dependence analysis is implemented using Jedd [16], a Java language extension
that supports use of binary decision diagrams to store and manipulate relations.
STINGER inputs a program in Java bytecode, the initial set of program entities

128 S. Anand, A. Orso, and M.J. Harrold

specified to be symbolic (called Symg in Section), and a specification of the
capabilities of the decision procedure used by the symbolic executor (in terms
of supported operators). Given these inputs, STINGER performs two tasks: (1) it
performs type-dependence analysis and identifies and reports the two kinds of
problematic cases considered (i.e., constraints that cannot be handled by the
decision procedure and symbolic values that may flow outside the scope of the
software being symbolically executed); (2) it performs an automated translation
of the program and generates skeleton stubs for the problematic cases identified,
which the user is expected to complete with appropriate code.
We used STINGER to investigate three research questions:

RQ1: How effective is our technique in identifying parts of the code respon-
sible for constraints that cannot be handled by the decision procedure in use?

RQ2: How often do symbolic values flow outside the boundaries of the pro-
gram being symbolically executed? When that happens, can our analysis cor-
rectly identify and report problematic cases beforehand?

RQ3: To what extent can the use of our analysis reduce the transformation
needed to perform symbolic execution?

Empirical Setup. As subjects for our studies, we used two freely-available Java
programs: NANOXML and ANTLR. NANOXML (http://nanoxml.cyberelf.be/)
is an XML-parsing library that consists of approximately 6KLOC. We selected
NANOXML because it is small yet not trivial, and lets us evaluate our technique
and inspect our results in detail. ANTLR (http://www.antlr.org/) is a widely-
used language-independent lexer and parser generator that consists of 46KLOC.
ANTLR was selected because it is a relatively large and complex software that can
provide more confidence in the generality of our results. NANOXMUL inputs a file
containing an XML document, and ANTLR inputs a file containing the grammar
of a language. We changed both applications so that they input an array of
symbolic characters arr instead of reading from a file. We then ran STINGER
and specified arr as the only element in the initial set of symbolic entities.
STINGER produced, for each program, a report and a transformed version of the
program.

4.1 Results and Discussion

To address our research questions, we ran STINGER on the subjects, and measured
several statistics as shown in Fig.[7l In the figure, the number of methods includes
both methods of the application and methods in the Java standard library, which
may also need to be transformed when symbolically executing a program. We
first discuss the results for each research question independently, and then discuss
the precision of the analysis.

RQ1. STINGER finds 48 (for NANOXML) and 82 (for ANTLR) cases that would
be problematic for our decision procedure of choice [6]. In this context, the prob-
lematic cases are those that involve bit-wise and modulo operations over symbolic
values. These problematic cases reside in 10 and 23 methods of NANOXML and
ANTLR, respectively. These cases would be reported to the user, who would then

Type-Dependence Analysis and Program Transformation 129

Statistics NANOXML ANTLR
RQL No. of problematic operations 48 82

No. of methods with problematic operations 10 23
RQ2 No. of native calls that may be reached by symbolic values 3 8

Total no. of native calls 27 48

No. of methods transformed 89 253
RQ3 No. of reachable methods 438 1176

No. of statements transformed 1253 4052

No. of statements in all transformed methods 2642 8547

Fig. 7. Empirical results

need to modify the methods (or replace them with stubs) to eliminate the prob-
lem. After inspecting STINGER’s report, we found that many of these problematic
constraints arise because of the use of modulo operators in classes HashMap and
HashTable. Replacing these classes with another implementation of a map, such
as TreeMap, eliminates the problem. The remaining problematic methods were
methods operating on characters (e.g., to change a character from upper to lower
case). We were able to rewrite these methods and eliminate the use of bit-wise
operators in them by assuming that the input characters are ASCII characters.

RQ@2. For the two subject programs, the only instances of symbolic values that
may flow outside the boundaries of the program consist of calls to native meth-
ods. STINGER determines that for 3 of the 27 (for NANOXML) and for 8 of
the 48 (for ANTLR) calls to native methods, a symbolic value may actually be
passed as a parameter, either through a primitive value or as a field of an object.
Based on these results we first observe that, for the two (real) applications con-
sidered, symbolic values may indeed cross the program boundaries and create
problems for symbolic execution. We also observe that our technique is successful
in identifying such problematic cases and in identifying methods that, although
potentially problematic, are guaranteed to never be actually reached by symbolic
values. For NANOXML and ANTLR, our analysis lets users focus their attention
on only 15% of the potentially-problematic calls.

R@3. Our analysis discovers that symbolic values are confined within approxi-
mately one fifth of the total number of methods for both subjects. Furthermore,
within methods that may handle symbolic values, less than half of the state-
ments are actually affected by these values. Our translator is therefore able to
transform the program so that half of the statements can be executed without
incurring any overhead due to symbolic execution.

Precision. Our analysis is conservative and can be imprecise in some cases (i.e.,
it may conclude that a variable may store symbolic values even if it never does so
in reality). Although context-sensitivity increases the precision significantly, the
underlying points-to analysis does not scale beyond 2-cfa for our subjects, and
STINGER can thus produces imprecise results. For example, for NANOXML, we
found that many standard library classes are unnecessarily transformed because

130 S. Anand, A. Orso, and M.J. Harrold

of the imprecision of the analysis. We believe that this imprecision could be
reduced by using a demand-driven, highly-precise points-to analysis.

5 Related Work

Our work is related to approaches that provide tool support for abstraction
in model checking (e.g., [4[7]). In [], type inference is used to identify a set
of variables that can be removed from a program when building a model for
model checking. In [7], a framework for type inference and subsequent program
transformation is proposed. In both approaches, the type-inference algorithm
used is not as precise as our type-dependence analysis. Precision is crucial for
our goal of reducing manual intervention and reducing the transformations that
must be performed. However, unlike our work, where only one kind of abstraction
(concrete to symbolic) is supported, the framework in [7] allows multiple user-
defined abstractions.

Our approach to symbolic execution (i.e., execution of a transformed pro-
gram) is also used in several other approaches (e.g., [2ITTJT9]). These approaches,
however, transform the entire program, whereas our technique leverages type-
dependence analysis to transform only the parts of the program actually affected
by the symbolic execution. In this way, our technique reduces both the manual
intervention and the amount program transformation needed. Also related to
ours is the technique presented in [B], which is based on executing the pro-
gram symbolically. The technique differs from our approach because it does not
transform the program, but executes it using a virtual machine with a special
semantics that support symbolic values.

Finally, being our type-dependence analysis a specific instance of flow analysis,
it bears similarity to other approaches based on flow analysis, such as taint
analysis [20] and information-flow analysis [26]. Our demand-driven formulation
of type-dependence analysis is similar to the formulation of points-to analysis
in [22], and our cloning-based approach to interprocedural analysis and use of
binary decision diagrams to make context-sensitive analysis scale were studied
in [27] and [I], respectively.

6 Conclusion

In this paper, we address two problems that hinder the application of symbolic
execution to real software: (1) the generation of constraints that the decision
procedure in use cannot handle and (2) the flow of symbolic values outside the
program boundary. We present type-dependence analysis, which automatically
and accurately identifies places in the program where these two problems oc-
cur, and a technique that uses the analysis results to help users address the
identified problems. We also present a program-transformation technique that
leverages the analysis results to selectively transform applications into appli-
cations that can be symbolically executed. We have implemented the analysis
and transformation techniques in a tool, STINGER, that is integrated with Java

Type-Dependence Analysis and Program Transformation 131

Pathfinder’s symbolic execution engine. In our empirical evaluation, we applied
STINGER to two Java applications. The results show that the problems that we
target do occur in real applications, at least for the subjects considered, and
that our analysis can identify these problems automatically and help users to
address them. Moreover, we show that our analysis is precise enough to allow
for transforming only the part of the code actually affected by symbolic values
at runtime.

In future work, we plan to use STINGER for generating test inputs for real
software and investigate techniques for guiding symbolic execution to exercise
new program behaviors (e.g., coverage of specific program states). In this paper,
we consider program boundaries defined by pragmatic reasons, such as interfaces
with external libraries. In the future, we will investigate the application of our
approach to cases where the boundaries are defined by the user (e.g., to exclude
part of the system and thus reduce the state space to explore).

References

1. M. Berndl, O. Lhoték, F. Qian, L. Hendren, and N. Umanee. Points-to analysis
using BDDs. In PLDI, pages 103—114, 2003.

2. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE:
Automatically generating inputs of death. In CCS, pages 322—-335, 2006.

3. C. Cadar, P. Twohey, V. Ganesh, and D. R. Engler. EXE: A system for automati-
cally generating inputs of death using symbolic execution. Technical Report CSTR
2006-01, Stanford University., 2006.

4. D. Dams, W. Hesse, and G. J. Holzmann. Abstracting C with abC. In CAV, pages
515-520, 2002.

5. X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic execution for
checking strong heap properties of open systems. In ASE, pages 157-166, 2006.

6. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
CAV, pages 81-94, 2006.

7. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, Robby,
H. Zheng, and W. Visser. Tool-supported program abstraction for finite-state
verification. In ICSE, pages 177-187, 2001.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In PLDI, pages 234-245, 2002.

9. V. Ganesh and D. Dill System Description of STP.
http://www.csl.sri.com/users/demoura/smt-comp/descriptions/stp.ps.

10. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In PLDI, pages 213-223, 2005.

11. W. Grieskamp, N. Tillmann, and W. Schulte. XRT—-exploring runtime for .NET
architecture and applications. Electr. Notes Theor. Comp. Sci., 144(3):3-26, 2006.

12. S. Horwitz, T. W. Reps, and S. Sagiv. Demand interprocedural dataflow analysis.
In FSE, pages 104-115, 1995.

13. Java PathFinder. http://javapathfinder.sourceforge.net.

14. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In TACAS, pages 553-568, 2003.

15. J. C. King. Symbolic execution and program testing. CACM, 19(7):385-394, 1976.

h

132 S. Anand, A. Orso, and M.J. Harrold

16. O. Lhotak and L. J. Hendren. Jedd: a BDD-based relational extension of Java. In
PLDI, pages 158-169, 2004.

17. W. Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In SC, pages 4-13, 1991.

18. T. W. Reps. Program analysis via graph reachability. In ILPS, pages 5-19, 1997.

19. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In
FSE, pages 263-272, 2005.

20. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format-string
vulnerabilities with type qualifiers. In USENIX Security Symposium, pages 201—
218, 2001.

21. O. Shivers. Control-flow analysis in Scheme. In PLDI, pages 164-174, 1988.

22. M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven points-to analysis
for Java. In OOPSLA, pages 59-76, 2005.

23. E. Tilevich and Y. Smaragdakis. Transparent program transformations in the
presence of opaque code. In GPCE, pages 89-94, 2006.

24. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java optimization framework. In CASCON, pages 125-135, 1999.

25. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In ISSTA, pages 97-107, 2004.

26. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2/3):167-188, 1996.

27. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In PLDI, pages 131-144, June 2004.

28. T. Xije, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generat-
ing object-oriented unit tests using symbolic execution. In TACAS, pages 365-381,
2005.

A Type-Dependence Analysis for Fields and Entities of
Array-Types

Sym, computed by the fix-point algorithm described in section 2 contains only
local variables, static fields, formal parameters, and return values of scalar types
that are type-dependent on variables in Symg. In this section, we describe how
type-dependent instance fields and entities of array-types are computed from
Sym.

The type-dependent instance fields are represented by the set {f s.t. y aidtil

xz,x € Sym}. In other words, a field f is type-dependent on a variable in Symy
if the value of a local variable x that is type-dependent on Symy is stored into
field f of some reference variable y. To compute the type-dependent entities
of array-types, the algorithm first computes a set of program statements that
allocate arrays Arrs, as follows:

put[elem] put[length]
T or

Arrs = {s s.t. s € pt(a),a z in TDG, z € Sym}

A statement that allocates an array a is in Arr, if either (1) a may store a
value that is not type-compatible with a’s current element-type, or (2) length
of @ may not be of integer type as a result of change in the types of variables in

Type-Dependence Analysis and Program Transformation 133

Symyg. pt(a) returns all of the statements that allocates arrays to which a local
variable a of array-type may point-to at run-time. After computing Arrg, the
entities of array-type that are type-dependent on variables in Symg are given
by the set {v s.t. pt(v) N Arrs # @}. In other words, an entity of array-type is
type-dependent on a variable in Symy if it may store an array allocated by one
of the statements in Arr,.

B Transformation Rules

Fig. Bl shows the transformation rules for statements referencing arrays.

Original statement

Transformed statement Guard
[s : 1 = new 7[3]]
[l = new array” (< i >)] s € Arrs (11)
[l1 = l2.1ength(7)]
[ll = bOxExr‘R(lg.length)] lh #li,la =12 (12)
[l = unbox™ " (array len” (I2))] i =11l #ls (13)
[ll = array lenT(ZQ)] lh #li,la # 12 (14)
[1i] ™) = 4]
[array set™ (< I >, < i1 >, < iz >)] 7 € NumType,l # l or i1 # 41 (15)
larray set” (< 1 >, < i1 >,1i2)] 7 € RefType or 7 = boolean, ! # [or i1 # 41 (16)
[t1 = 12[i] 7]
[ll :bOXT(lg[i])] I #li,la =120 =14 (17)
[l1 = array get™ (< l2 >, < i>)] 7 € NumType,ly #lz or i # 4,11 # 11 (18)
[l1 = unbox® ™ (array get™ (< Iz >, < i >))] 7 € NumType,ls # I or i # 4,11 = I (19)
[l1 = array get™ (< l2 >, <>)] 7 = boolean, Iz # lz or i # i (20)
[l1 = (1) array get" (< l2 >, < i >)] 7 € RefType,lo # 1z or i # 1 (21)

Fig. 8. Tranformation Rules (Continuation from Fig. [6)

JPF-SE: A Symbolic Execution Extension to
Java PathFinder

Saswat Anand!, Corina S. Pasareanu?, and Willem Visser?

1 College of Computing, Georgia Institute of Technology
saswatQcc.gatech.edu
2 QSS and RIACS, NASA Ames Research Center, Moffett Field, CA 94035

{pcorina,wvisser}@email .arc.nasa.gov

Abstract. We present JPF-SE, an extension to the Java PathFinder
Model Checking framework (JPF) that enables the symbolic execution
of Java programs. JPF-SE uses JPF to generate and explore symbolic
execution paths and it uses off-the-shelf decision procedures to manipu-
late numeric constraints.

1 Introduction

Explicit state model checking tools, such as Java PathFinder (JPF) [B[12], are
becoming effective in detecting subtle errors in complex concurrent software, but
they typically can only deal with closed systems. We present here JPF-SE, a
symbolic execution extension to Java PathFinder, that allows model checking of
concurrent Java programs that take inputs from unbounded domains.

JPF-SE enables symbolic execution of Java programs during explicit state
model checking, which has the following unique characteristics: (a) checks the
behavior of code using symbolic values that represent data for potentially in-
finite input domains, instead of enumerating and checking for small concrete
data domains (b) takes advantage of the built-in capabilities of JPF to perform
efficient search through the program state space: systematic analysis of different
thread interleavings, heuristic search, state abstraction, symmetry and partial
order reductions (c¢) enables modular analysis: checking programs on un-specified
inputs enables the analysis of a compilation unit in isolation (d) automates test
input generation for Java library classes [I3] (e) uses annotations in the form
of method specifications and loop invariants to prove light-weight properties of
Java programs [8] and (f) uses a common interface to several well-known de-
cision procedures to manipulate symbolic numeric constraints; JPF-SE can be
extended easily to handle other decision procedures.

2 JPF-SE Overview

Java PathFinder. JPF [5l[12] is an explicit-state model checker for Java pro-
grams that is built on top of a customized Java Virtual Machine. By default,

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 134 2007.
© Springer-Verlag Berlin Heidelberg 2007

JPF-SE: A Symbolic Execution Extension to Java PathFinder 135

‘Omega‘ ‘CVC—Lite{ ‘YICES ‘ ‘ STP ‘

‘ Generic Decision Procedure Interface ‘

Continue/Backtrack
Source Code Instrumented
.] JPF
Program Instrumentation Program
Correctness Counterexample/
Specification Test Suite

Fig. 1. Tool Architecture

JPF stores all the explored states, and it backtracks when it visits a previously
explored state. The user can also customize the search (using heuristics) and it
can specify what part of the state to be stored and used for matching.

Symbolic Execution. Symbolic execution [7] is a technique that enables analy-
sis of programs that take un-initialized inputs. The main idea is to use symbolic
values, instead of actual (concrete) data, as input values and to represent the
values of program variables as symbolic expressions. As a result, the outputs
computed by a program are expressed as a function of the symbolic inputs. The
state of a symbolically executed program includes the (symbolic) values of pro-
gram variables, a path condition and a program counter. The path condition
accumulates constraints which the inputs must satisfy in order for an execution
to follow the corresponding path.

JPF-SE Architecture. In previous work, we presented a framework that uses
JPF to perform symbolic execution for Java programs [6,[8]. It has now been
added to the JPF open-source repository [5] and is illustrated in Figure [l Pro-
grams are instrumented to enable JPF to perform symbolic execution; concrete
types are replaced with corresponding symbolic types and concrete operations
are replaced with calls to methods that implement corresponding operations on
symbolic expressions. Whenever a path condition is updated, it is checked for
satisfiability using an appropriate decision procedure. If the path condition is un-
satisfiable, the model checker backtracks. The approach can be used for finding
counterexamples to safety properties and for test input generation (that satisfy
a testing criterion, such as branch coverage).

Symbolic State Space Exploration. JPF-SE exploits JPF’s ability to ex-
plore arbitrary program control flow (loops, recursion, method invocation), but
performing symbolic execution on a program with loops (or recursion) may re-
sult in an infinite number of symbolic states. JPF-SE uses two complementary
techniques to address this problem: (a) for systematic state space exploration
JPF-SE puts a bound on the size of the program inputs and/or the search depth,

136 S. Anand, C.S. Pasareanu, and W. Visser

Table 1. Comparative Results. “N/A” indicates not supported.

Example Interface Omega CVCL YICES STP

File 00:15 00:26 N/A N/A

TCAS Pipe 00:04 00:12 N/A N/A

Native 00:03 00:13 00:06 00:31

Native table 00:01 00:11 00:05 N/A

Native inc N/A 00:03 00:01 N/A

File 02:02 06:02 N/A N/A

TreeMap Pipe 07:42 13:04 N/A N/A
Native 01:39 06:11 03:06 >60:00

Native table 00:40 05:10 02:36 N/A

Native inc N/A 02:58 00:33 N/A

and (b) JPF-SE provides automated tool support for abstracting and compar-
ing symbolic states, to determine if a symbolic state has been visited before, in
which case the model checker will backtrack (see [I] for details).

Decision Procedures. JPF-SE uses the following decision procedures; they
vary in the types of constraints they can handle and their efficiency. Omega
library [9] — supports linear integer constraints. CVC-Lite [3] — supports inte-
ger, rational, bit vectors, and linear constraints. YICEY] [4] — supports types
and operations similar to those of CVC-Lite. STPH [2] — supports operations
over bit vectors. In the JPF-SE interface, all integers are treated as bit vectors
of size 32. Recently, we have also added a constraint solver, RealPaver [10],
that supports linear and non-linear constraints over floating point numbers.

Generic Decision Procedure Interfaces. JPF-SE provides three interfaces
with decision procedures. They vary in their degree of simplicity and efficiency.
In the file based interface, the decision procedure is started for each query and
a query is sent (and result received) via a file. This interface is the simplest to
use and extend, but in general it is slow. With the pipe interface, the decision
procedure is run concurrently with JPF and the communication is accomplished
over a pipe. Although this does not suffer the process startup cost of the file
approach it is harder to use and extend and it is operating system and language
specific. With the native interface, JPF communicates directly with the decision
procedure through a Java Native Interface (JNI). This mode is most difficult to
implement among the three, but is usually much faster.

There are two optimizations available for the native interface: a table-based
approach for efficient storing of the path condition that allows sharing of common
sub-expressions and if the decision procedure supports incremental constraint
analysis, the path condition is not sent all at once but rather just the new
constraint that should be added/removed before checking satisfiability.

1 SMT competition 2006 winner in all categories but one.
2 SMT competition 2006 winner for QF UFBV32 (Quantifier Free, Uninterpreted
Functions, Bit Vector).

JPF-SE: A Symbolic Execution Extension to Java PathFinder 137

Experience with Different Decision Procedures. The interfaces for com-
munications with the decision procedures is defined such that it is straight-
forward to connect a new tool. As a consequence, JPF-SE is well suited for
performance comparisons across a wide array of examples. We show in Table [I]
the runtime results (in mins:secs) for generating all reachable states while run-
ning JPF-SE with varying decision procedure configurations over two examples:
TCAS from the Siemens Suite and on the TreeMap example from [I3]. TCAS
is small (only 2694 queries) but contains many constraints that are both satis-
fiable and unsatisfiable; TreeMap produces many queries (83592), but they are
all satisfiable.

The preliminary results indicate that the native interfaces are the fastest and
both the optimizations (where applicable) improve the performance further. For
this reason YICES and STP are only used through the native interface.

3 Conclusion and Future Work

We have presented JPF-SE, an extension to JPF that enables symbolic exe-
cution of Java programs to be performed during model checking. JPF-SE uses
JPF to generate and explore symbolic states and it uses different decision proce-
dures to manipulate numeric constraints. JPF-SE has been applied to checking
concurrent Java programs and to generating test inputs for Java classes. In the
future we plan to extend JPF-SE’s code instrumentation package, which cur-
rently handles only numeric values, to handle symbolic complex data structures.
We also plan to add compositional reasoning for increased scalability and to
interface with tools using the SMT-LIB standard [I1] (through file and pipe).

Acknowledgements

We thank Sarfraz Khurshid and Radek Pelanek for contributing to this work.

References

1. S. Anand, C. Pasareanu, and W. Visser. Symbolic execution with abstract sub-
sumption checking. In Proc. SPIN, 2006.

2. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Auto-
matically generating inputs of death. In Computer and Comm. Security, 2006.

3. CVCL. http://www.cs.nyu.edu/acsys/cvcl/.

4. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
Proceedings of CAV, volume 4144 of LNCS, pages 81-94. Springer-Verlag, 2006.

5. Java PathFinder. http://javapathfinder.sourceforge.net.

6. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In Proc. TACAS’03, Warsaw, Poland, April 2003.

7. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7), 1976.

8. C. Pasareanu and W. Visser. Verification of java programs using symbolic execution
and invariant generation. In Proc of SPIN’04, volume 2989 of LNCS, 2004.

138 S. Anand, C.S. Pasareanu, and W. Visser

9. W. Pugh. The Omega test: A fast and practical integer programming algorithm
for dependence analysis. Commun. ACM, 31(8), Aug. 1992.

10. realPaver. http://www.sciences.univ-nantes.fr /info/perso/permanents/granvil/
realpaver/.

11. SMT-LIB. http://combination.cs.uiowa.edu/smtlib/.

12. W. Visser, K. Havelund, G. Brat, S. J. Park, and F. Lerda. Model checking pro-
grams. Automated Software Engineering Journal, 10(2), April 2003.

13. W. Visser, C. Pasareanu, and R. Pelanek. Test input generation for java containers
using state matching. In Proc. ISSTA, 2006.

A Symbolic Algorithm for
Optimal Markov Chain Lumping

Salem Derisavi

Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada
derisavi@sce.carleton.ca

Abstract. Many approaches to tackle the state explosion problem of
Markov chains are based on the notion of lumpability, which allows com-
putation of measures using the quotient Markov chain, which, in some
cases, has much smaller state space than the original one. We present,
for the first time, a symbolic algorithm and its implementation for the
lumping of Markov chains that are represented using Multi-Terminal Bi-
nary Decision Diagrams. The algorithm is optimal, i.e., generates the
smallest possible quotient Markov chain. Our experiments on various
configurations of two example models show that the algorithm (1) han-
dles significantly larger state spaces than an explicit algorithm, (2) is in
the best case, faster than an efficient explicit algorithm while not pro-
hibitively slower in the worst case, and (3) generates quotient Markov
chains that are several orders of magnitude smaller than ones generated
by a model-dependent symbolic lumping algorithm.

1 Introduction

Markov chains (MCs) are among the fundamental mathematical structures used
for performance and dependability modeling of communication and computer
systems. As the size of an MC usually grows exponentially with the size of
the corresponding high-level model, one often encounters the inevitable state
explosion problem, which often makes solution of the MC intractable. Many
approaches to alleviate or circumvent this problem are implicitly or explicitly
based on the notion of lumpability [17], which allows computation of measures
of the original MC using the solution of a lumped (or quotient) MC, which, in
some cases, is much smaller than the original one.

Even a lumped MC can be extremely large, and therefore, its explicit (e.g.,
sparse matrix) representation may not fit in memory. Symbolic data structures
such as Multi-Terminal Binary Decision Diagrams (MTBDDs) [7] and Matrix
Diagrams (MDs) [6] are two of the widely-used approaches that enable us to
represent large MCs using less memory than the explicit approach. Nowadays,
algorithms that directly generate symbolic representations of MCs from the high-
level model are commonplace.

In one form of classification, there are three types of lumping algorithms:
state-level, model-level, and compositional. State-level algorithms work directly

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 139 2007.
© Springer-Verlag Berlin Heidelberg 2007

140 S. Derisavi

Table 1. Examples of previous work on lumping algorithms in probabilistic settings

state-level model-level compositional
explicit BL5] [20] Stochastic Activity Networks [12] Interactive Markov chains
symbolic 14 [10] state-sharing composed models [II] Markov chains
s [I8] PRISM models represented by matrix diagrams

on the MC (i.e., at the level of the states) and do not use information from
the high-level model. They are optimal, i.e., they generate the smallest possible
lumped MC, are restricted neither to a specific high-level formalism nor to a
specific type of symmetry, and are often slower than the other two types.

Both model-level and compositional algorithms exploit information from the
high-level model specification to generate lumped MCs. Neither types are
optimal because the optimal lumping cannot be computed directly from the
high-level model. Finally, both types address a specific (set of) formalism(s).
Model-level algorithms are distinguished by the fact that they exploit a restricted
type of user-specified symmetry while compositional algorithms apply a state-
level algorithm to individual components of a compositional model.

Not all model-level algorithms can automatically find and exploit all types of
symmetries. Therefore, the fact that the main source of lumpability is symmetry
in the high-level model specification does not imply that model-level algorithms
are in general preferred over state-level algorithms, as one may argue. More-
over, there are situations in which only state-level algorithms are applicable. For
example, consider an MC that is transformed by a model checking algorithm.

Table [M shows examples of previous work on lumping algorithms for stochas-
tic/probabilistic models, e.g., Markov chains, Markov decision processes. It clas-
sifies them also based on whether they use explicit or symbolic representation.
Fairly related to MC lumping, is lumping of non-probabilistic models, a.k.a.
bisimulation minimization. Bouali et. al. [2] were the first to apply symbolic
BDD-based techniques. Wimmer et. al. [22] improve upon [2] by presenting a
general BDD-based algorithm that computes some of the popular bisimulations.

The shaded area in Table [I] indicates where our new algorithm fits. This
paper gives, to our knowledge for the first time, a symbolic MTBDD-based
MC lumping algorithm and its implementation. In [I4], an algorithm based on
DNBDDs (Decision-Node BDDs) is given without a concrete implementation
or runtime analysis. Our algorithm is (1) symbolic, and hence, it can handle
much larger state spaces than explicit algorithms, (2) optimal, i.e., generates
the smallest possible lumped MC, (3) state-level, i.e., does not rely on the high-
level model, and (4) faster than the efficient explicit algorithm of [9] in the best
case, and not prohibitively slower in the worst case we experimented.

The rest of the paper is organized as follows: Section [l gives an overview of
cT™MCdl (Continuous Time Markov Chains), lumpability of CTMCs, the explicit
lumping algorithm of [9] which is the basis of our new algorithm, and MTBDDs.
Sections Bl and @] put forward the new contributions of this paper. The former

1 Although the paper is focused on CTMCs, the algorithms can be adapted for DTMCs
(Discrete Time Markov Chains) in a very straightforward manner.

A Symbolic Algorithm for Optimal Markov Chain Lumping 141

explains how we transformed the explicit algorithm to a symbolic algorithm that
is not so fast. The latter presents two techniques that dramatically improve the
running time of our algorithm. In Section [l we compare the running time of our
symbolic algorithm, the explicit state-level algorithm of [9], and the symbolic
model-level algorithm of [I8] by applying them to several configurations of two
example models. We finally conclude in Section

2 Background

2.1 Notation, CTMC, and Lumpability

All matrices are real-valued and typeset with bold characters. All sets are finite
and typeset with roman characters. We consider a CTMC M = (S, R) with state
space S and state transition rate matrix R : S x S — RZ? where R(s,s) = 0
for all s € S. The generator matrix Q : S x S — R is defined as Q(s,s) =
— > vesR(s,8") and Q(s,t) = R(s,t) for all 5,z € S and s # t. Let n = S|
and m denote the number of non-zero entries of R. For a matrix A and C' C S,
we define A(s,C) = > .o A(s,s') and A(C,s") = > .~ A(s,s'). Consider a
partition IT = {C4,...,C5} of S. Sets Cy,---,C5 are the equivalence classes,
or in short, classes of II. We use [s];r to denote the class of IT that contains
s € S. Partition IT’ is a refinement of I (or finer than IT) if every class of IT’
is a subset of some class of II. In that case, II is said to be coarser than II'.

Often, the final goal of a CTMC analysis is not the computation of the steady-
state or transient probability of its states. Instead, it is the computation of high-
level measures such as performability. Many of those high-level measures can be
computed using reward values associated with states (i.e., rate rewards) and the
stationary and transient probability distribution [16]. In this paper, we do not
concern ourselves with those details as they do not contribute to the main ideas
of our algorithm. However, we will briefly explain how to adapt the algorithm
to take rate rewards and initial probability distribution into account.

Sometimes, the desired measures can be obtained from a smaller (lumped)
CTMC using less time and space. The lumped CTMC is constructed through
a partition (or equivalence relation) on the state space of the original CTMC.
For that to be possible, the original CTMC should satisfy a set of conditions
with respect to that partition. Following [], two of the most important sets
of conditions (and the types of lumping they lead to) on the generator matrix
Q are outlined in Definition [Il Often, it is necessary to check the lumpability
conditions in terms of R instead of Q. Theorem [serves that purpose. Finally,
the lumped (or quotient) CTMC is obtained using Theorem Bl For more details
on the properties of ordinary and exact lumping see [4].

Definition 1. Consider a CTMC M = (S,R), its corresponding Q matriz, and
a partition IT of S. Then, with respect to II, M is

1. ordinarily lumpable iff VC,C"' € II, 5,8 € C: Q(s,C") = Q(8,C"), and

2. exactly lumpable iff VC,C" € II, s,§ € C: Q(C', s) = Q(C, 5).

142 S. Derisavi

Theorem 1 (Theorem 2.1 of [8]). Consider a CTMC M = (S,R). With

respect to a partition II, M 1is

1. ordinarily lumpable iff VC # C'e€ II, s,5 € C: R(s,C") = R(§,C").

2. exactly lumpable if VC,C" € 11, 5,5 € C: R(s,5) = R(5,5) AR(C’,s) =
R(C,3).

Theorem 2 (Theorems 2.2 and 2.3 of [8]). Let CTMC M = (S,R) be

ordinarily or exactly lumpable with respect to a partition II of S. Then M =
(S,R) is the lumped (or, quotient) CTMC' such that

S = {arbitrary element of C|C € II}
B R(S8,[8|m) (ordinary) if§#8
R(35,5) = ¢ R([8]m,§") (emact) if§+#8
0 (both) if5=37

Note that although S depends on the arbitrarily selected element of each class
of II, all possible lumped CTMCs will be “equivalent”.

2.2 Explicit State-Level Lumping Algorithm

The basis of our new symbolic algorithm is the efficient lumping algorithm of [9].
It is an optimal and explicit state-level algorithm for ordinary lumping. In [§],
we extended the algorithm to Markov reward processes (i.e., CTMCs augmented
with rate rewards and initial probability distribution) and also to exact lumping.
Since we discuss both ordinary and exact lumping, we will use the extended
version of [8] in this paper.

Figure shows the explicit lumping algorithm. ExXpPLuMPCTMC (EXp
stands for explicit) takes the original CTMC M and returns the quotient CTMC
M. Tt works in two stages. First, EXPCOARSESTPART computes the coarsest
partition IT with respect to which M is lumpable by repetitive refinements of
IT'™, To extend our algorithm to Markov reward processes we only need to set
the initial partition I7™ such that all states with the same value (of rate reward
or initial probability) are in the same class. If rate rewards and initial probability
distribution are not considered, we set IT'™ = {S}. In the second stage (line 2),
ExpCoMPQUOT computes the quotient M according to Theorem [2

ExpPCOARSESTPART maintains L, a list of potential splitters. Each refinement
iteration of EXPCOARSESTPART (line 3-5) refines I with respect to a potential
splitter B. EXPSPLIT splits each class C of II into classes C1,...,C!, (line 3-4)
as follows. For ordinary lumping, the states of C' are grouped based on their total
outgoing rates to B (line 2, of EXPCOMPUTEKEYS) and for exact lumping they
are grouped based on their total incoming rates from B (line 2.). More formally,

Vi<i,j<a,seCiseC:k(s)=k(s)i=] (1)

The algorithm works correctly regardless of the selection of C} in line 5 of EX-
PSPLIT. If we choose C! to be the largest among C1, ..., C” , it is proved that the

A Symbolic Algorithm for Optimal Markov Chain Lumping 143

ExpSpLIT(IT, B, L)

ExpLumMPCTMC(M) o 1 foreach C € IT
1 II := ExpCOARSESTPART(S, R, IT"™") 2 k :=ExpCompUTEKEYS(R, C, B)
2 (S,R) := ExrComrQuoT(S, R, IT) 3 {C1,...,CL} := refinement of C
3 return M = (5,R) according to Eq. ()
4 m:=nuic,...c}-c
ExPCOARSESTPART(S, R, IT'™) 5 L:=Lu{Cy,...,CL} — arbitrary C]
1 I:=ma™ ExpCompuTEKEYS(R, C, B)
2 [.= qrini 1 foreach s € C
3 while L #0 25 k(s) := R(s, B)
4 B := Por(L) 2. k(s) := R(B, s)
5 ExpSpLiT(I1, B, L) 3 foreachse S—C
6 return IT 4 k(s):=0

5 return k

(a) Explicit lumping algorithm

SYMLUMPCEMC(M) inive SYMComPUTEKEYS(R, C, B)
1 B(I) := SYMCOARSPART(S, R, B(IT™)) Ro := APPLY (X, R, APPLY (X, C, PERMUTE(B)))
2 (R, S) :=SymCompQuoT(S, R, B(IT)) 1, R, := AppLy(x, R, APPLY(X, B, PERMUTE(C)))

3 return M = (R,S) 2, Ko :=SuMC(R,)
SYMCOARSESTPART(R, S, B(IT'™)) 2. K. := SuMC(R.)

1 B8(H) := ﬁ(Hi"i) 3o return K,

2 for sc:=0to |II| —1 3e return K.

3 B := GETCLASS(B(I1), sc) SYMCoMPQUOT(S, R, B(II))

4 SymSprLIT(3(I1), B) 1 5(9) = 0; ﬁ(s, t) == 0;

5 return 3(II) 2 forc:=0to || -1
SymSpLiT(3(11), B) 30 Ce GETCLASS(B(IT), ¢)

1 forc:=0to |[[I| -1 3e C. := PERMUTE(GETCLASS(B(IT), c))
2 C := GETCLASS(B(IT), ¢) 4 X = {arbitrarz element of C.}
3 K := SYMCoMPUTEKEYS(R, C, B) 5 S = ApprLY(+, S, X.)
4 T := {leaves of K} 6 R':=AprrLy(X,R,S)
5 a:=1 7 forc:=0to |IT| -1
6 foreachz €T 8, R/ := SUMC(APPLY (X, R’, PERMUTE(C..)))
7 Cl, = ApPLY(=, K, z) 8e R := SUMR(APPLY(X, R’, PERMUTE(C.)))
8 a:=a+l , 9 R”:= AprpLY(x,R", PERMUTE(X,))
9 REP;ACECLAss(ﬁ(H),c, c1) 10 R := ApPLY(+, R, R")
10 for i:=2to « 11 return (5 ﬁ)
11 AppCrass(8(I),C}) ’

(b) Symbolic lumping algorithm

Fig. 1. Explicit lumping algorithm for Markov chains

algorithm runs in O(mlgn) time [9]. The algorithm finishes when IT is refined
with respect to all potential splitters. See [§] for more details.

2.3 Multi-Terminal Binary Decision Diagram

BDDs (Binary Decision Diagrams) [3] are a data structure for compact repre-
sentation of binary functions of k binary variables, i.e., {0,1}* — {0,1}. MTB-
DDs [7] are a variation of BDDs used to represent finite-ranged functions of k
binary variables, i.e., {0, 1}* — A where A is a finite set.

MTBDDs are widely used to represent transition matrices of MCs and we
follow that in this paper. To that purpose, the MTBDD uses 2L binary vari-
ables vry,...,vry and vey,...,ver that encode the row index and the column
index, respectively. Although the variable ordering can be arbitrary, we con-
sider the interleaved ordering in which the top-down order of the variables is
vr1, VC1, UT9,VCs, . .., vrL,ver. Interleaved ordering often leads to smaller

144 S. Derisavi

MTBDDs for MCs that are generated from high-level models [I3]. We denote
the set of all possible row and column indices (states) by S, = XiL:l vr; and
S. =X iL:1 ve;. We use calligraphic letters to denote the MTBDD representation
of matrices and sets (described below). We denote an element of R by R(s, 1)
where s € S, and t € S, are encodings of states.

Our implementation is based on the CUDD package [21], a widely-used and
efficient package for the manipulation of MTBDDs. In an MTBDD-based imple-
mentation, such as CUDD, the same set of MTBDD variables are used to repre-
sent all entities, that is, matrices and sets of states. In our symbolic algorithm,
we will need to represent states using either the variable set vry, ..., vry (row en-
coding) or vcy, . . . ,vey, (column encoding). We define B representing a set B such
that Vte€ S, : B(s,t) = [s € B] (row encoding) or Vt€ S, : B(t,s) = [s € B|
(column encoding), in which [s € B] = 1if s € B and [s € B] = 0 otherwise.
Since B(s,t) (resp. B(t, s)) does not depend on ¢ in row (resp. column) encod-
ing we use B(s) as a shorthand. PERMUTE(B), used in Fig. switches the
encoding of the set B from row encoding to column encoding or vice versa. By
default, sets are represented using row encoding.

3 Transforming the Algorithm from Explicit to Symbolic

To transform the explicit algorithm of Figure to a symbolic one, we need
to replace both its explicit data structures and also its explicit operations with
symbolic counterparts. We already know how to symbolically represent matrices
and sets of states. In this section, we first present a new approach for the symbolic
representation of partitions. Then, we show how to replace the set of splitters L
by partition II, thereby representing the set of splitters symbolically. Finally, we
explain how the various explicit operations of Figure are done symbolically.

3.1 Symbolic Representation of Partitions

The challenges in the symbolic representation of partition I are that 1) |II|
can be very large, and 2) II is updated frequently during the execution of the
algorithm and modifying a symbolic data structure in an “explicit” manner is
often very inefficient. Our new symbolic approach for partition representation
tries to address these challenges. Of equal importance are its properties that
we exploit in Section Ml to improve the running time of our symbolic algorithm.
Conceptually, our partition representation technique does not need to be based
on a symbolic data structure. However, it will be very inefficient otherwise.

Before we explain our new approach, we give a quick overview of other studied
approaches. The first obvious method is to store each class of a partition as a
BDD. Another technique, given in [I], is to assign an extra set of BDD variables
to denote class indices. In particular, s € C; iff P(s,i) = 1 where P is the
BDD representation of II. Yet another approach is to use a BDD P such that
P(s,t)y=1if 3C el :se CnteC.

A Symbolic Algorithm for Optimal Markov Chain Lumping 145

Representation. Let IT = {Cy,...,Cy_1} be a partition of S # 2. We define
a family of sets B(IT) = {Fy,...,Py—1,S} to represent IT as follows: s € P,
(0 < i < k) iff the i*® bit of the binary representation of the index of [s] 7 is one.
In other words,

.Pi = U Cj and S — Pi = U Cj. (2)

ith bit of j is one ith bit of j is zero

We will use (MT)BDDs to represent members of $(II). The important point
here is that we can represent IT with k+ 1 = [lgd] + 1 instead of d (MT)BDDs.

Example. Let S = {1,...,8}, [= {Cy,C1,C>,Cs}, Cy = {2,3,8}, C1 = {1},
Cy = {4,7}, and C3 = {5,6}. Then, 5(II) = {Fo, P1, S} in which P, = {1,5,6}
and P, = {4,5,6,7}.

Partition Manipulation. In the explicit algorithm, we access I through get-
ting its classes and update IT through adding/removing classes to/from it. In
the following, we describe how to symbolically perform those manipulations by
one access procedure GETCLASS, and two update procedures REPLACECLASS,
and ADDCLASS. Let II’ be the modified partition after an update procedure is
performed on II. Using Eq. (@) to compute the symbolic representation of IT’,
i.e., B(IT"), after each update procedure would take O(2%) set operations. In the
following, we show how to compute it directly from the symbolic representation
of IT, i.e., B(II) using only O(k) set operations.

1. GETCLASS(B(II), j) returns C;. Let (by—1---b1bo)2 be the binary represen-
tation of j (0 < j < d). Then, using Eq. (@), we have

k—1 .
. S - Pi if bi =0
GETCLASS(B(IT),j) = Cj = OO D; where D; = {R £ =1 (3)

Using GETCLASS, line 1 of EXPSPLIT is symbolically performed in lines 1-2
of SYMSPLIT.

2. REPLACECLASS(B(IT), 1, C}) replaces C; € II with C] such that II' = (II —
{ehHw{C]} ={Co,...,Ci_1,C},Cis1,...Cq—1B. We have §" = (§ — C))
C}, and by Eq. @),

%

;)P if 4th bit of [is zero
(P, — C;)w C] if ith bit of [is one

3. ApDCrLAss(B(IT), Cy) adds Cy to IT where Cy is non-empty set disjoint with
all members of IT. Obviously, we have S’ = S W Cy, and by Eq. @),

%

;) B if ith bit of d is zero
P, W Cy if ith bit of d is one
2 Although in a strict mathematical sense, the classes of a partition are not ordered,

we assign them a total order here.
3 W is the disjoint union operation.

146 S. Derisavi

For d = 2, assume P, = (). Using REPLACECLASS and a sequence of AD-
DCLASS operations, line 4 of EXPSPLIT is symbolically performed in lines
9-11 of SYMSPLIT.

3.2 Replacing Explicit L by Symbolic IT

In our new symbolic algorithm, we need to have a symbolic representation of L
that is efficient to update. Knowing that (1) similar to IT, L is a set of sets of
states, and (2) updates of L is very similar to updates of IT (compare lines 4 and
5 of EXPSPLIT), we will show how we have modified our algorithm such that we
do not need to explicitly store L. Instead, we use the symbolic representation of
Il and an index to emulate a list of potential splitters.

Consider Fig. I We have removed L from EXPCOARSESTPART (lines 2-5)
and EXPSPLIT (line 5) and replaced it by an index sc in SYMCOARSESTPART
(lines 2-3). In line 2 of SYMCOARSESTPART, sc iterates through all classes of II.
During the running time of the algorithm, classes are possibly added to (the end
of) II. Therefore, B, in line 3 of SYMCOARSESTPART, will take on the value of all
those new classes, one at a time. Note that the set of potential splitters processed
by SYMSPLIT may be different from the one processed by ExpSpLIT. However,
we will prove that SYMCOARSESTPART still works correctly by showing that the
different sets of splitters that EXPCOARSESTPART and SYMCOARSESTPART see
have the same refinement effect on I7.

Lemma 1. Assume C C S and {C1,...,CL} be a partition of C. Then, splitting
a partition IT of S with respect to any o members of T = {C,C1,...,C.} leads
to the same refinement of II.

Proof. We give the proof for ordinary lumping. The arguments for exact lumping
are similar. According to Eq. (D), for any splitter B € T, R(s, B) determines
how the blocks of II are partitioned. Moreover, for any state s € S, we have
R(s,C])+---+R(s,C") = R(s, C). Therefore, given any « terms of the equality,
the (a + 1)-st term is implicit. Hence, splitting with respect to any B € T' does
not further refine a partition that has already been refined with respect to the
other @ members of T'.

Theorem 3. The sequence of splitters seen by SYMCOARSESTPART leads to the
correct refinement of I1.

Proof. We need to show that each time a block C is partitioned into Cy,...,C.,
at least a members of {C,Cy,...,C.} have already been or will be seen by SyM-
COARSESTPART. Assume the algorithm is at the beginning of line 9 of Sym-
SPLIT. There are two cases. If sc < ¢, then SYMCOARSESTPART has not yet
seen C as a splitter, and lines 9-11 replace C with {Ci,...,C.}. All those « sets
will be seen as splitters in future iterations of SYMCOARSESTPART. If sc > ¢,
then SYMCOARSESTPART has already used C as a splitter, and lines 9-11 add
a — 1 sets, i.e., {C),...,C.}, to the end of II. All of those sets will be seen by
SYMCOARSESTPART in its future iterations.

A Symbolic Algorithm for Optimal Markov Chain Lumping 147

3.3 Symbolic Procedures: SymComputeKeys and SymSplit

Let B,C C S. ExpCoMPUTEKEYS computes R(s, B) for ordinary lumping and
R(B,s) for exact lumping for each s € C. In order to compute R(s, B) and
R(B, s) symbolically, we define RS"Z and RSP as follows:
REB(s,t) =riff R(s,t)=r AC(s)=1A B(t)=1 (ordinary lumping)
REB(s,t) =riff R(s,t)=7 A B(s)=1AC(t) =1 (exact lumping)

In other words, RS"Z (resp. RE'P) is the same as R except that its set of
rows and columns are restricted to C and B (resp. B and C) respectively. RS E
and RSP are computed in lines 1, and 1. of SYMCOMPUTEKEYS, the sym-
bolic version of EXPCOMPUTEKEYS. SYMCOMPUTEKEYS uses APPLY (<, X,))
which is provided by the CUDD package and returns an MTBDD Z such that
Z(s,t) = X(s,t) > Y(s,t) where xx is an arithmetic or logical operator. For
logical operators, APPLY returns an MTBDD with only 0 and 1 terminals.
Now, we define MTBDDs KS+5(s,t) and KB (s,t) as follows:

VteS.: KSB (s t) = Z REB(s,1') = Z REB(s,t') = R(s, B)

t'es. t'eB
Vse S, : KOB(s,t) = Z REB(s't) = Z REB(s',t) = R(B, 1).
s'eS, s'eB

Since KS"B(s,t) = R(s, B) and KB (s,t) = R(B,t), KS*P and K&F are in fact
the MTBDD representations of k in Section Thus, they are the key to par-
tition C into {Cy,...,C.} according to Eq. (). They are computed symbolically
using SUMC and SUMR. For an MTBDD A, SUMC(A) returns A" such that
VieS.: A(s,t) =) g Als,t'). Similarly, SUMR(A) returns A" such that
VseS,: Als,t) =) ,cq A(s',t). SUMC and SUMR are implemented using
Cudd addExistAbstract function of the CUDD package. Lines 4-8 of SYMSPLIT
show how to symbolically derive C1,...,C., from C. Line 4 is done using a depth
first traversal of /C.

Note that if there is no transition from any state in C (resp. B) to any state in
B (resp. C), then RS"E (resp. RS+B), and therefore, KSB (resp. KS+P) are zero-
valued MTBDDs. Hence, C will not be split. The second technique in Section M
exploits that observation to improve the running time of the symbolic algorithm.

So far, we have transformed all data structures and operations of the explicit
procedures of Figure to symbolic ones in their corresponding symbolic pro-
cedures. That gives us the completely symbolic algorithm of Figure

4 TImproving the Symbolic Algorithm Running Time

The properties of our partition representation method enable us to improve the
running time of the symbolic algorithm developed in Section[3 In this section, we
present two techniques T1 and T2 that utilize those properties. Both techniques
use relatively small additional memory to gain significant speed improvements.

148 S. Derisavi

Based on the combination of the techniques, we distinguish three versions of
our algorithm: V1 uses neither techniques, V2 uses T1 only, and V3 uses both
T1 and T2. In the following, we present the arguments only for ordinary lumping
and they are straightforwardly adaptable to the case of exact lumping. We will
compare the performance of the three versions in Section

4.1 T1: Computing GetClass(G(I1),j + 1) from GetClass(3(II), j)

The main loops of SYMCOARSESTPART and SYMSPLIT compute all classes of IT
using GETCLASS. T1 is an algorithm that computes those classes more efficiently
than naively applying Eq. @) for each class. To do so, T1 exploits the similarity
between the computation of all pairs of consecutive classes of I1.

Figure 2 shows the Class Computation Tree (CCT) for II. The tree shows the
sequence of set operations that GETCLASS executes for all classes of IT according
to Eq. (B'I)E It has k£ + 1 levels numbered top-down from 0 to k, and hence, has
at most 2¥*1 — 1 nodes. We denote the root node by 7. A non-root node v # r
is connected to its parent p(v) by an edge with label e(v) C S. For a non-leaf
node u at level i, we denote its left and right children by w; and w,.. We define
e(u;) = S—P; and e(u,) = P;. A path from r to v corresponds to a set expression
E(v) defined recursively as follows:

E(r) =S, and E(v) = E(p(v)) Ne(v). (4)

For example, in Fig. 2 we have E(u') = SN (S — Fy) = (S — By) and E(v) =
SN(S—PFPy)N...N(S— Px_1). Indexing the leaf nodes from left to right starting
from 0, we observe that for a leaf node v; with index j, E(v,) yields the jth
class of IT, i.e., E(vj) = C; = GETCLASS(B(IT), j).

For any leaf node v, the number of set intersections in F/(v), and hence, the num-
ber of times GETCLASS performs set intersection, is k. Hence, calling GETCLASS
for all classes of IT requires k - d = ©(dlgd) set intersections in which d = |I1|.

Now consider two classes C;,Cy € IT (' = j + 1 is a special case) and their
corresponding leaf nodes v; and v; (See Figure[2]). We observe that set expres-
sions E(vj) and E(v;) have a common prefix subexpression which is determined
by the lowest common ancestor node z of v; and vj:. Hence, by storing E(z)
at z during the computation of C; = E(v;), we can compute Cj = E(vj)
with smaller number of set intersections than what would be necessary for its
computation from scratch using Eq. (3).

Making the above observation, we propose the following method to compute
all classes of IT in order of their indices: perform a depth first traversal of the
CCT such that the left subtree is visited before the right subtree. At each non-
root node v compute F(v) using Eq. @) and store it as an MTBDD. The number
of set intersections performed is the number of edges of the CCT which is at
most 2871 — 2 € O(d). Note that we do not need to store E(v) for all nodes;
storing one per level suffices.

In summary, T1 reduces the number of set operations necessary to compute
all classes of IT from O(dlgd) to ©(d) using k + 1 extra MTBDDs.

4 The tree is not generated or stored by the algorithm.

A Symbolic Algorithm for Optimal Markov Chain Lumping 149

01
(S = Pr_1) P

Czk—z Czk—l

Fig. 2. Class Computation Tree (CCT)

4.2 T2: Fast Detection and Skipping of Stable Classes

SYMSPLIT splits each class C € IT with respect to the splitter B. However, if
there is no transition from any state in C to any state in B, then C will not be
split into smaller subclasses. Therefore, executing lines 2-11 of SYMSPLIT can
be skipped for classes such as C. We call C stable with respect to B.

T2 is a technique for efficient detection of stable classes. It enables the main
loop of SYMSPLIT to skip over those classes, thereby reducing SYMSPLIT’s run-
ning time. CTMCs generated from high-level models often have sparse transition
matrices. For such CTMCs, the ratio of stable classes (with respect to a given
B) to the total number of classes is often close to 1. Therefore, T2 yields a
considerable speedup.

Let B’ be the set of states that have at least one transition to any state in
B, ie., B’ ={s'|3s € B, R(s',s) # 0}. Observe that C is stable with respect
to B iff B’ N C = . Therefore, the problem is reduced to evaluating whether
B'NC = 0. If B = () every class C € II is stable with respect to B. In the
following, we assume that B’ # ().

Using the modified CCT, a slight modification of the CCT, we can efficiently
compute B’ N C for all C € II. The modified CCT uses the following equation
to compute the set expression E’(v) corresponding to a node v: E'(r) = B’ and
E'(v) = E'(p(v)) Ne(v) for v # r. Thus, E'(v;) = B'NC; for a leaf node v; with
index j. Finally, checking for emptiness of an MTBDD takes constant time.

A significant improvement is achieved by observing that if E’(v) is empty,
so is E'(v") for all descendants v’ of v. Thus, we can prune the tree at node v,
thereby saving time on its traversal.

150 S. Derisavi

5 Performance Study

While the previous sections show that our symbolic algorithm is efficient from
a theoretical point of view, the evidence of its utility comes from its imple-
mentation and use on example models. In this section, we briefly describe the
implementation we have made, and compare its performance with implementa-
tions of other related algorithms. The performance measures that we compare
are mainly the time and space requirements of the algorithms and the size of
lumped MCs that they generate.

In particular, we compare the performance of the different versions of the
algorithm described in Section[d] (that is, V1, V2, and V3), the state-level explicit
algorithm (EA) of [9], and the model-level symbolic algorithm of Kwiatkowska
et. al. [I8] (KA). Our experiments on two example models show that (1) our
symbolic algorithm is able to lump MCs that are orders of magnitude larger
than what is lumpable using an explicit lumping algorithm, (2) the techniques
explained in Section Flreduce the running time of the symbolic algorithm by up
to 3 orders of magnitude, (3) in the best case we tried, V3, the fastest version
of our symbolic algorithm outperforms EA, and in the worst case, it is not
prohibitively slower than EA, and (4) KA is a few orders of magnitude faster
than V3 while V3 generates lumped MCs that are (sometimes several) orders of
magnitude smaller.

5.1 Implementation and Example Models

To generate both the MTBDD and sparse matrix representations of the input
Markov chains, we use the probabilistic model checking tool PRISM [15]. All the
code involved in the experiments was compiled using gecc 3.4.4. All experiments
were conducted on a Pentium 4 2.66 GHz CPU with 1 GB of RAM.

We consider two example models from the literature to study the performance
of the algorithms: A fault-tolerant parallel computer system (FPCS) [19] and a
peer-to-peer (P2P) protocol based on BitTorrent [I8]. For the first model, we
converted the SAN (Stochastic Activity Network) specification to the PRISM
specification. For the second model, we used the PRISM specification given in
http://www.cs.bham.ac.uk/~dxp/prism/casestudies/peer2peer.php.

Both models have two parameters N7 and N,. For FPCS, they denote the
number of computers in the system and the number of memory modules in each
computer, respectively. For P2P, they represent the number of clients and the
number of blocks of the file to be transmitted, respectively.

5.2 Results

Comparison of V1, V2, V3, and EA. EA is theoretically the fastest explicit
state-level lumping algorithm given so farfl. We applied the ordinary lumping
algorithm of V1, V2, V3, and EA on a number of configurations of FPCS and

5 We are not aware of a study that compares the practical performance of various
explicit state-level algorithms.

A Symbolic Algorithm for Optimal Markov Chain Lumping 151

Table 2. Performance Results

(a) Performance comparison of symbolic and explicit algorithms

Config 7 of states # of nodes total running time (sec) peak # of nodes
(N1, N2) n n n n Vi1 V2 V3 EA V1 V2 V3
2,2) 1.58e4 703 5960 4979 1.83e2 4.00el 7.50e0 5.20e—1 2.58e4 2.58e4 2.75e4

(2,
(3,1) 2.30e4 969 14370 9079 1.00e3 1.90e2 2.90el 8.80e—1 6.42e4 6.42e4 6.86e4
8 (2,3) 2.57e5 2145 9114 13731 1.20e4 1.50e3 7.80el 1.00el 6.82e4 6.82e4 7.09e4
g (3,2 1.89e6 9139 34122 43134 TL TL 4.20e3 9.40el TL 4.68e5 4.78e5
o (2,4) 3.80e6 5151 12314 34318 TL 2.60e4 5.80e2 1.80e2 TL 1.62e5 1.65e5
(2,5) 5.26e7 10585 15468 70809 TL 2.30e5 3.00e3 ML TL 3.49e5 3.54e5
(3,3) 1.24e8 47905 53177 151368 TL TL 1.15e5 ML TL TL 2.56e6
(3,5) 3.28e4 56 2451 1751 3.40e0 2.72e0 1.70e0 8.38e—1 2.36e4 2.73e4 2.83e4
(4,5) 1.05e6 126 11941 5914 8.04el 5.17el 2.03el 3.84el 1.18e5 1.43e5 1.50e5
% (5,5) 3.36e7 196 26266 10975 7.43e2 4.13e2 1.37e2 ML 3.63e5 4.44e5 4.68e5
A (6,5) 1.07e9 266 40591 20212 3.64e3 1.91e3 5.56e2 ML 8.56e5 1.06e6 1.12e6
(7,5) 3.44el10 336 54916 26182 1.18e4 6.22e3 1.64e3 ML 1.54e6 1.83e6 1.93e6
(8,5) 1.10ell 406 69241 36153 4.43e4 2.53e4 1.14e4 ML 2.65e6 3.37e6 3.51e6

(b) Comparison of V3, Kwiatkowska’s algorithm and their combination

Model Config # of states # of nodes running times (sec)
(]\/17 N2) n EKA ﬁ\/g n ?]KA ﬁ\/g V3 KA Comb.
(3,5) 3.28e¢4 5.98e¢3 56 2451 12518 1751 1.70e0 1.15e—1 2.15e0
(4,5) 1.05e6 5.24e4 126 11941 42166 5914 2.03el 4.90e—1 2.56el
PopP (5,5) 3.36e7 3.77e5 196 26266 101630 10975 1.37¢2 1.30e0 1.68e2

(6,5) 1.07e9 2.32e6 266 40591 189704 20212 5.56e2 3.05e0 7.09e2
(7,5) 3.44e10 1.26e7 336 54916 306123 26182 1.64e3 5.11e0 2.26e3
(8,5) 1.10ell 6.15e7 406 69241 449599 36153 1.14e4 9.17e0 1.48e4

P2P. The results are given in Table [2(a)l Columns 3 to 6 give the number of
states and MTBDD nodes of the original (input) and the lumped (output) MCs.
Times shown in columns 7 to 10 include both the partition computation and the
quotient construction times. The last three columns give the maximum number
of live MTBDD nodes during the runtime of V1, V2, and V3. ML (Memory
Limit) and TL (Time Limit) mean that the corresponding data is not available
because the algorithm ran out of memory and its running time exceeded 3 days
(=~ 2.5 x 10° seconds), respectively.

Since all algorithms are optimal, they generate the same lumped MCs, and for
V1-V3, with the same MTBDD representations. It has been observed (e.g., see
[13]) that lumping often increases the size of the MTBDD representation, i.e., n <
7. The reason is that the structure regularity of the MTBDD of the lumped MC
is lost. In our experiments, that holds true when 7 is sufficiently large.

From Table [2(a)| we can see how effective T1 and T2, the improvement tech-
niques described in Section [, are. Based on all experiments, V3 is faster than
V2 by a factor of 1.6 to 76 and V2 is faster than V1 by a factor of 1.3 to 10.
Since T1 saves time on computing all classes of I and T2 does so by skipping
stable classes of I1, their effects grow as |IT| and 7 increase (note that |IT| <7
during the runtime of the algorithm). That is the reason why the speedup fac-
tors are less for P2P than FPCS and for each model the speedup factors increase
as n grows. Overall, the combination of T1 and T2 achieve a speedup of 2 to
700, depending on the input MC. Note that their combined memory overhead, in

152 S. Derisavi

terms of the number of alive nodes, is very low (at most 32%) relative to the
speedup they cause.

Those improvements significantly pale the speed disadvantage that V3 has
compared to EA. We observed that if the structure of input MTBDD is suffi-
ciently regular and the CTMC is significantly lumpable, V3 outperforms EA. In
configuration (4,5) of P2P, V3 is 1.9 times faster than EA. We anticipate that
the ratio of V3’s speed to EA’s would increase for larger P2P models if EA did
not run out of memory. The reason is that V3’s running time is growing slower
than n while EA’s would increase at least as fast as n. Although V3 is 45 times
slower than EA on one of the experiments, its main advantage comes from its
ability to handle MCs that are several orders of magnitude larger.

SymComPQuOT of Fig.[L(b)|has two explicit loops over states of the lumpable
partition. Therefore, one may not consider it as a “very symbolic” algorithm or
may have suspicion about its efficiency. Based on our measurements (not shown
in Table[2(a)), SYMCOMPQUOT never takes more than 23% of the total running
time of the symbolic algorithm for the FPCS model. The corresponding number
for the P2P model is 6%.

Comparison and Combination of Two Symbolic Algorithms. Finally, we
compare the performance of V3 against another symbolic algorithm. We are not
aware of any other state-level symbolic lumping algorithm. However, we think
that it is informative to compare our algorithm to the MTBDD-based model-level
lumping algorithm of Kwiatkowska et. al. [18]. Kwiatkowska’s algorithm (KA)
exploits a special type of symmetry, i.e., symmetry among identical components.

Table [2(b)| shows the results of our experiments with V3 and KAMA. In gen-
eral, nga # nys since KA is not optimal, and therefore, may not generate the
smallest quotient CTMC for all inputs. Based on the results given in Table
we observe that (1) KA is a few orders of magnitude faster than our algorithm
because it gets symmetry information from the high-level specification of the
model and not from the CTMC, (2) nys is (sometimes, several) orders of mag-
nitude smaller than ks because V3 is optimal, (3) V3 may additionally lead
to a much smaller MTBDD representation (7jxa > 7vs) as is the case for all
instances of P2P model we tried. Obviously, (2) generally holds for models that
are lumpable due to symmetries other than those exploited by KA. For models
that have no symmetries but those exploitable by KA, KA is much more efficient
than V3 in that it would generate the (same) smallest quotient MC much faster.

In explicit lumping algorithms, we observe the same trend when comparing
state-level and model-level algorithms: the former are slower but may generate
much smaller quotient CTMCs. Since the running time of explicit state-level
algorithms are at least linear in n, it will be beneficial to combine the the state-
level and the model-level algorithms, i.e., to apply them in sequence. First, the

5 We did not include the FPCS model in Table because KA does not currently
support exploiting the hierarchical symmetries of the FPCS model. However, we
believe that the theory and implementation of KA are extendible to hierarchical
symmetries in a straightforward manner as in [10].

A Symbolic Algorithm for Optimal Markov Chain Lumping 153

model-level algorithm quickly produces a partially lumped CTMC. Then, the
state-level algorithm takes the result and produces the optimally lumped CTMC
much faster than what it would take the state-level algorithm to optimally lump
the original CTMC.

The last column of Table [2(b)|shows the total running time of applying KA
and V3 in sequence. As we can see, in the case of symbolic algorithms, the
combination is always slower than V3. That is not a surprising result because
the running time of a symbolic state-level algorithm (e.g., V3) does not depend
on the size of the state space of the input CTMC. Rather, it depends on the
structure regularity and the number of nodes of the input MTBDD; the former is
diminished and the latter is increased by the model-level algorithm (fxa > 7).

6 Conclusion and Future Work

In this paper, we developed the first symbolic state-level lumping algorithm for
Markov chains using a new partition representation technique whose properties
enabled us to improve the running time of the algorithm by up to three orders
of magnitude. In the worst case we experimented, our symbolic algorithm was
less than two orders of magnitude slower than an efficient explicit algorithm. In
the best case, the former was even faster by a factor of 1.9. The natural strength
of our algorithm is its ability to lump CTMCs with state spaces that are several
orders of magnitude larger than what the explicit algorithm can.

We also compared our state-level symbolic algorithm with Kwiatkowska’s
symbolic model-level algorithm. We observed in our experiments that although
our algorithm is a few orders of magnitude slower, it generates lumped CTMCs
that are several orders of magnitude smaller. Finally, we combined the two sym-
bolic algorithms. Unlike the explicit case, the combination is always slower than
the state-level algorithm due to loss of structure regularity and increase in size
of the MTBDD representation by the model-level algorithm.

There is no study that shows the effect of the various partition representation
methods on the performance of (Markov chain) lumping algorithms. This paper
is a first step toward that study. We also would like to investigate whether our
partition representation method benefits other symbolic algorithms. Finally, we
intend to integrate the algorithm into PRISM.

Acknowledgments. We would like to thank Holger Hermanns for pointing out
some of the previous work, Dave Parker, Gethin Norman, and Marta Kwiatkowska
for their technical support with the PRISM tool and and the P2P model, Shravan
Gaonkar for his helpful comments on the manuscript, and last but not least, the
reviewers for their very useful feedback.

References

1. E. Béde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan,
R. Wimmer, and B. Becker. Compositional performability evaluation for STATE-
MATE. In Proc. of QEST, USA, Sep. 2006.

154

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Derisavi

A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Proc. of
CAV, volume 663 of LNCS, pages 96-108. Springer, 1992.

. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Trans. Comp., 35(8):677-691, Aug. 1986.

. P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of

Applied Probability, 31:59-74, 1994.

. P. Buchholz. Efficient computation of equivalent and reduced representations for

stochastic automata. Int. Journal of Comp. Sys. Sci. & Eng., 15(2):93-103, 2000.

. G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker solution

of GSPNs. In Proc. of PNPM, pages 22-31, 1999.

. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multiterminal

binary decision diagrams: An efficient data structure for matrix representation.
Formal Methods in System Design, 10(2/3):149-169, 1997.

. S. Derisavi. Solution of Large Markov Models Using Lumping Techniques and

Symbolic Data Structures. PhD thesis, U. of Illinois at Urbana-Champaign, 2005.

. S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal state-space lumping in

Markov chains. Information Processing Letters, 87(6):309-315, September 2003.
S. Derisavi, P. Kemper, and W. H. Sanders. Symbolic state-space exploration
and numerical analysis of state-sharing composed models. Linear Algebra and Its
Applications, 386:137-166, July 15, 2004.

S. Derisavi, P. Kemper, and W. H. Sanders. Lumping matrix diagram representa-
tions of markovian models. In Proc. of DSN, pages 742-751, Japan, 2005.

H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality,
volume 2428 of LNCS. Springer, 2002.

H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal binary decision
diagrams to represent and analyse continuous time Markov chains. In Proc. of 3rd
Meeting on Numerical Solution of Markov Chains (NSMC), pages 188-207, 1999.
H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process algebras
and their bdd-based implementation. In ARTS, pages 244-264, 1999.

A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for
automatic verification of probabilistic systems. In H. Hermanns and J. Palsberg,
editors, Proc. of TACAS 06, volume 3920 of LNCS, pages 441-444. Springer, 2006.
R. A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and De-
cision Processes. Wiley, New York, 1971.

J. G. Kemeney and J. L. Snell. Finite Markov Chains. D. Van Nostrand Company,
Inc., 1960.

M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic
model checking. In T. Ball and R. Jones, editors, Proc. of CAV, volume 4114 of
LNCS, pages 234-248. Springer-Verlag, 2006.

W. H. Sanders and L. M. Malhis. Dependability evaluation using composed SAN-
based reward models. J. of Para. and Dist. Comp., 15(3):238-254, July 1992.

W. H. Sanders and J. F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE J. on Selected Areas in Comm., 9(1):25-36,
Jan. 1991.

F. Somenzi. CUDD: Colorado University decision diagram package. public soft-
ware, Colorado Univeristy, Boulder, http://vlsi.colorado.edu/ fabio/.

R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker. Sigref - a
symbolic bisimulation tool box. In Proc. of ATVA ’06, China, 2006. to appear.

Flow Faster: Efficient Decision Algorithms for
Probabilistic Simulations*

Lijun Zhang', Holger Hermanns', Friedrich Eisenbrand?,
and David N. Jansen®*

! Department of Computer Science, Saarland University, Saarbriicken, Germany
2 Department of Mathematics, University of Paderborn, Germany
3 Department of Computer Science, University of Twente, Enschede, The Netherlands
4 Software Modeling and Verification Group, RWTH Aachen, Germany

Abstract. Abstraction techniques based on simulation relations have
become an important and effective proof technique to avoid the infamous
state space explosion problem. In the context of Markov chains, strong
and weak simulation relations have been proposed [17l6], together with
corresponding decision algorithms [35], but it is as yet unclear whether
they can be used as effectively as their non-stochastic counterparts. This
paper presents drastically improved algorithms to decide whether one
(discrete- or continuous-time) Markov chain strongly or weakly simulates
another. The key innovation is the use of parametric maximum flow
techniques to amortize computations.

1 Introduction

To compare the stepwise behaviour of states in transition systems, simulation
relations (3) have been widely considered [I8/I6]. Simulation relations are pre-
orders on the state space such that if s X s’ (“s’ simulates s”) state s can mimic
all stepwise behaviour of s; the converse, i.e., s’ 3 s is not guaranteed, so state
s’ may perform steps that cannot be matched by s. Thus, if s = s’ then every
successor of s has a corresponding related successor of s/, but the reverse does
not necessarily hold. In the context of model checking, simulation relations can
be used to combat the well-known state space explosion problem, owed to the
preservation of certain classes of temporal formulas. For instance, if s 3 s’ then
for all safe CTL* formulas @ (formulas with universal path-quantifiers only) it
follows that s’ = @ implies s = & [9].

Verification of stochastic systems faces very similar state space explosion prob-
lems. Therefore, simulation preorders [I7J6] have been proposed for discrete- and
continuous-time Markov chains (DTMCs and CTMCs). In correspondence to
the non-probabilistic setting, these preorders preserve fragments of PCTL [I4]
and CSL [2/4]. They provide the principal ingredients to perform abstraction of
Markov chains, while preserving safe fragments of the respective logics. However,

* This work is supported by the NWO-DFG bilateral project VOSS and by the DFG
as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 155-[I639] 2007.
© Springer-Verlag Berlin Heidelberg 2007

156 L. Zhang et al.

it is as yet unclear whether these relations can be used with similar effectiveness
as in the non-probabilistic setting. One prerequisite is the availability of efficient
decision procedures for simulation in finite-state models.

Let n denote the number of states, and m denote the number of transitions.
For strong simulation preorder, Baier et al. [3] introduced a polynomial decision
algorithm with complexity O(n”/logn), by tailoring a network flow algorithm
to the problem, embedded into an iterative refinement loop. This technique can
not be applied to weak simulations [7] directly. In [5], Baier et al. proved that
probabilistic weak simulation is decidable in polynomial time by reducing it to
a linear programming (LP) problem.

In this paper, we present drastically improved algorithms. For strong simu-
lation, the core observation is that the networks on which the maximum flows
are calculated, are very similar across iterations of the refinement loop. We ex-
ploit this by adaptation of the parametric maximum flow algorithm [I0] to solve
the maximum flows for the arising sequences of similar networks, arriving at an
overall time complexity O(m?n).

For weak simulation, adapting the maximum flow idea is not straightforward.
This is because successor states might need to be split into two fragments and
one does not a priori know how to split them. Nevertheless, we manage to incor-
porate the parametric maximum flow algorithm into a decision algorithm with
complexity O(m?n?).

The algorithms are developed for both discrete- and continuous-time Markov
chains. Especially in the very common case, where the state fanout of a model is
bounded by a constant k (and hence m < kn), our strong simulation algorithm
has complexity O(n?) which is faster by a factor of n®/logn in comparison to
the existing algorithm. This complexity corresponds to the best algorithms for
deciding strong simulation over non-probabilistic systems [T5I1T]. As we will dis-
cuss the weak simulation algorithm even leads to an improvement in the order of
n'0 for CTMCs (and n® for DTMCs), compared to the one using a polynomial
LP routine [20]. Remarkably, our algorithm is polynomial in the RAM-model
of computation while no known LP-based algorithm is. We argue that espe-
cially for CTMCs, which have a very broad spectrum of applications ranging
from disk storage dimensioning to gene regulatory networks, the availability of
such algorithms can become a key ingredient to fight the state space explosion
problem.

The paper proceeds by first giving necessary definitions and background in
Section [2l Section [B] presents algorithms for deciding strong simulations while
Section [focuses on algorithms for weak simulations. Section Bl concludes the

paper.

2 Preliminaries

This section recalls the definitions of fully probabilistic systems, discrete- and
continuous-time Markov chains, strong and weak simulations on these models [7].
We also review the preflow algorithm to solve maximum flow problems [13].

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 157

Models. Let X,Y be finite sets. For f: X — R, let f(A) denote > ., f(z) for
al AC X. If f: X XY — R is a two-dimensional function, let f(z, A) denote
>yealf(@y)forallz € X and ACY, and f(A,y) denote 3_ 4 f(z,y) for all
y€Y and A C X. Let AP be a fixed, finite set of atomic propositions.

Definition 1. A labeled fully probabilistic system (FPS) is a tuple D = (S, P, L)
where S is a finite set of states, P : Sx.S — [0, 1] is a probability matriz satisfying
P(s,5) €[0,1] for all s € S, and L : S — 24 is a labeling function.

A state s is called stochastic if P(s,S) = 1, absorbing if P(s,S) = 0, and sub-
stochastic otherwise.

Definition 2. A labeled discrete-time Markov chain (DTMC) is a FPS D =
(S, P, L) where s is either absorbing or stochastic for all s € S.

Definition 3. A labeled continuous-time Markov chain (CTMC) is a tuple C =
(S,R, L) with S and L as before, and a rate matrix R : § x § — R>o.

The embedded DTMC of C = (S,R, L) is defined by emb(C) = (S,P, L) with
P(s,s") = R(s,s')/R(s,S) if R(s,S) > 0 and 0 otherwise. We will also use P
for a CTMC directly, without referring to its embedded DTMC explicitly.

A distribution g on S is a function p : S — [0, 1] satisfying the condition
w(S) < 1. We let Dist(S) denote the set of distributions over the set S. p is
called stochastic if u(S) = 1. If it is not stochastic, we use an auxiliary state
(not a real state) L ¢ S and set u(L) = 1 — p(S). Further, for a given FPS,
let P(s,-) denote the distribution defined by the transition probability matrix
P forall s € S. Let P(s, 1) =1 —P(s,S) for all s € S, and let S denote the
set SU{L}. For s € S, let post(s) denote {s' € S| P(s,s’) > 0}, i.e., the set of
successor states of s. Let post | (s) denote {s" € S| | P(s,s") > 0}, i.e., post(s)
plus the auxiliary state L in case that P(s, L) > 0. For CTMC C = (S,R, L),
let post(s) ={s' € S| R(s,s’) >0} forall s € S.

For a given FPS, DTMC or CTMC, its fanout is defined by maxscgs |post(s)|,
the number of states is usually denoted by n, and the number of transitions is
denoted by m. For s € S, reach(s) denotes the set of states that are reachable
from s with positive probability. For a relation R C S x S and s € S, let R][s]
denote the set {s’ € S | (s,s') € R}, and R™![s] denote the set {s’ € S| (s',s) €
R}. If (s,8') € R, we write also s R s’

Simulation relations. Strong simulation is based on the notion of a weight func-
tion. We recall the definition here from [I7], adapted to FPS as in [7].

Definition 4. Let p,p’ € Dist(S) and R C S x S. A weight function for (u, ')
w.r.t. R, denoted by p Cg u', is a function A : S x S; — [0,1] such that
A(s,s') > 0 implies s R s' or s = L, u(s) = A(s,S1) for s € S1 and p/(s') =
A(SL,8") fors e S,.

Strong simulation requires similar states to be related via weight functions on
their distributions [17].

158 L. Zhang et al.

Definition 5. Let D = (S,P, L) be an FPS. R C S x S is a strong simulation
on D iff for all s1,s2 with s1 R so: L(s1) = L(s2) and P(s1,-) Cr P(sa,-). We
say that so strongly simulates s1 in D, denoted by s1 Zq se2, iff there exists a
strong simulation R on D such that s1 R so.

For CTMCs we say that ss strongly simulates s; if, in addition to the DTMC
conditions, sy can move stochastically faster than s; [7], which manifests itself
by a slower rate.

Definition 6. Let C = (S,R,L) be a CTMC. R C S x S is a strong simulation
on C iff for all s1,s9 with s1 R so: L(s1) = L(s2), P(s1,:) Cr P(s2,") and
R(s1,5) < R(s2,S). We say that so strongly simulates s1 in C, denoted by
$1 Se 82, iff there exists a strong simulation R on C such that s1 R ss.

We now recall the notion of weak simulation on FPSs. Intuitively, so weakly
simulates s; if they have the same labels, and if their successor states can be
grouped into sets U; and V; for i = 1,2, satisfying certain conditions. We can
view steps to V; as stutter steps while steps to U, are visible steps. It is then
required that there exists a weight function for the conditional distributions:
P(Sll and P(S‘" 7 where K; intuitively correspond to the probability of perform-
ing a visible btep from s;. For reasons explained in [7], the definition needs to
account for states which partially belong to U; and partially to V;. Technically,
this is achieved by functions ¢; that distribute s; over U; and V; in the definition
below [7].

Definition 7. Let D = (S,P, L) be an FPS. The relation R C S x S is a weak
simulation on D iff for all s1,s2 with s1 R sa: L(s1) = L(s2) and there exist
functions 6; : S1 — [0,1] and sets U;,V; € S, (for i =1,2) with

U, = {u; € post | (s;) | 6;(u;) >0} and V;={v; € post (s;)] 6:(v;) <1}
such that

1. (a) v1 R sa for all vi € VI\{L}, and (b) s1 R vy for all va € Vo\{L}

2. there exists a function A: S| x S — [0,1] such that:
(a) A(ui,u2) > 0 implies uy € Uy, us € Us and either uy R ug orug = 1,
(b) if K1 >0 and Ko > 0 then for all states w € S :

K- Aw,Usp) = P(s1,w)b1(w) and Ky - A(Ur, w) = P(s2,w)dz(w)

where K; =),y 6i(ui) - P(si,u;) fori=1,2.
3. foruy € Up\{L} there exists a path fragment sa, w1, ..., Wy, us with positive
probability such that n > 0, s; Rw; for 0 < j <n, and u1 R us.

We say that sy weakly simulates s1 in D, denoted s1 Za S2, iff there exists a
weak simulation R on D such that s1 R ss.

Condition (3.) will in the sequel be called the reachability condition. If Uy = ()
and Uy # (), which implies that K; > 0 and Ky = 0, the reachability condition

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 159

guarantees that for any visible step s; — wy with u; € Uy, s can reach a state
ug which simulates u; while passing only through states simulating s;.

Weak simulation on DTMCs arises as a special case of the above definition,
as a DTMC is an FPS (where each state is absorbing or stochastic). Weak
simulation for CTMCs is defined as follows.

Definition 8 ([7J6]). Let C = (S,R,L) be a CTMC. R C S x S is a weak
stmulation on C iff for s1 R sa: L(s1) = L(s2) and there exist functions 6; : S —
[0,1) and sets U;, V; C S1 (for i = 1,2) satisfying conditions (1.) and (2.) of
Definition[7 and the rate condition holds: (3’) K1 - R(s1,5) < Kz - R(s2,5).

We say that so weakly simulates s1 in C, denoted s1 Z¢ s2, iff there exists a
weak simulation R on C such that s1 R ss.

In this definition, the rate condition (8’) replaces the reachability condition of
the preceding definition. We refer to [7] for a discussion of subtleties in this
definition.

Simulation up to R. For an arbitrary relation R on the state space S of an FPS
with s1 R so2, we say that so simulates s; strongly up to R, denoted s; Zg s2,
if L(s1) = L(s2) and P(s1,-) Cr P(sg,-). Otherwise we write s; Zr s2. Note
that s; Sr s2 does not imply s; Zg4 s2 unless R is a strong simulation, since
only the first step is considered for Sgr. Likewise, we say that sy simulates s;
weakly up to R, denoted by s1 Zgr s2, if there are functions 6;, sets U;,V; as
required by Definition [for this pair. Otherwise, we write s; Zr s2. Similar to
strong simulation up to R, s1 QR so does not imply s éd $2, since no conditions
are imposed on pairs in R different from (s, s2). These conventions extend to
DTMCs and CTMC in the obvious way.

Preflow algorithm. We briefly recall the preflow algorithm [I3] p. 925] for finding
the maximum flow over the network N' = (V, E,u) where V is a finite set of
vertices and E C V xV is a set of edges. V' contains a distinguished source vertex
/ and a distinguished sink vertex \. v : E — Ry is the capacity function. We
extend the capacity function to all vertex pairs: u(v,w) = 0 if (v,w) € E. A flow
f on N is a function f: V x V — R that satisfies:

1. f(v,w) < uv,w) for all (v,w) eV xV capacity constraints
2. flv,w) = —f(w,v) for all (v,w) €V xV antisymmetry constraint
3. f(v,V) =0 at vertices v € V\ {/,\} conservation rule

The value of a flow function f is given by f(/,V). A mazimum flow is a flow of
maximum value.

A preflow is a function f:V x V — R satisfying (1.) and (2.) above, and the
relaxation of (3.): f(V,v) >0 for all v € V' \ {/'}. The excess e(v) of a vertex v
is defined by f(V,v). A vertex v & {/,\} is called active if e(v) > 0. Observe
that a flow is a preflow in which no vertex v is active for v € V' \ {/,\}. A
pair (v,w) is a residual edge of f if f(v,w) < u(v,w). The set of residual edges
w.r.t. f is denoted by Ef. The residual capacity us(v, w) of the residual edge
(v, w) is defined by u(v,w) — f(v,w). If (v,w) is not a residual edge, it is called
saturated. A wvalid distance function (called valid labeling in [13]) d is a function

160 L. Zhang et al.

SIMREL, (D)
1 R,Rnew — {(51,82) eSxS | L(S1) = L(Sz)}
2 do

3 R« Rpew and Rpew «— 0

4 for ((s1,s2) € R)

5 lf (81 jR 82)

6 Rrnew — Rnpew U {(s1,52)}.

7 until(Rnpew = R)

8 return R

Fig. 1. Basic algorithm to decide strong simulation

V — Rx>q U {oo} satisfying: d(7) = |V, d(\) = 0 and d(v) < d(w) + 1 for every
residual edge (v, w). A residual edge (v, w) is admissible if d(v) = d(w) + 1.

We initialise the preflow f by: f(v,w) = u(v,w) if v =/ and 0 otherwise. The
distance function d is initialised by: d(v) = |V| if v =/ and 0 otherwise. The pre-
flow algorithm maintains the preflow f and the valid distance function d. If there
is an active vertex v such that (v,w) is admissible, it pushes min{e(v), uy(v, w)}
flows from v toward the sink along the admissible edge (v, w). If v is active but
there are no admissible edges leaving it, the relabeling of v sets the distance of v
equal to min{d(w)+ 1 | (v,w) € E}. If there are no active vertices, the preflow
f is a maximum flow.

3 Algorithms for Deciding Strong Simulation

We recall first the basic algorithm to decide strong simulation preorder. Then,
we refine this algorithm to deal with strong simulations on FPSs, DTMCs and
CTMCs respectively.

Basic algorithm to decide strong simulation. The algorithm in [3], depicted
as SIMREL; in Fig. [[l takes as a parameter a model, which, for now, is an
FPS D. The subscript ’s’ stands for strong simulation; later, a very similar
algorithm, i.e., SIMREL,,, will be used for weak simulation. To calculate the
strong simulation relation for D, the algorithm starts with the trivial relation
Rinit = {(51,82) € S x S| L(s1) = L(s2)} and removes each pair (s1, s2) if so
cannot strongly simulate s; up to the current relation R, i.e., s1 Zr s2. This
proceeds until there is no such pair left, i.e., Ry = R. Invariantly through-
out the loop it holds that R is coarser than <;. Hence, we obtain the strong
simulation preorder 3; = R, once the algorithm terminates.

The decisive part of the algorithm is the check whether s; X s2 in line 5.
The answer is computed with the help of a maximum flow computation on a
particular network N (P(s1,), P(s2,), R) constructed out of P(sy,-), P(sa,")
and R. This network is constructed via a graph containing a copy t € S, of
each state t € S where S| = {t |t € S.} as follows: Let / (the source) and
\ (the sink) be two additional vertices not contained in S; U S, . For functions

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 161

p, i+ S — R>g and a relation R C S x S we define the network N (u, p/, R) =
(V, E,u) with the set of vertices

V={/\}U{seSLu(s)>0pu{seSL|p(s) >0}

and the set of edges E is defined by

E={(s,t) [(s,t) e Rvs = L}U{(7,5)} U{(t,\)}

where s,t € S| with u(s) > 0 and p'(¢) > 0. The capacity function wu is defined
as follows: u(/, s) = u(s) forall s € Sy, u(t,\) = p/(t) forallt € S, u(s,t) = 0
for all (s,t) € E and u(v, w) = 0 otherwise. This network is a bipartite network,
where the vertices can be partitioned into two subsets Vi := {s € S| | u(s) >
0yU{\} and V2 := {s € S, | p/(s) > 0} U {/} such that all edges have one
endpoint in V; and another in V5. For two states s1, 9 of an FPS or a CTMC,
we let M (s1, 52, R) denote the network N (P(s1,), P(sq,-), R).

The following lemma expresses the crucial relationship between maximum
flows and weight functions on which the algorithm is based. It is a direct exten-
sion of [3, Lemma 5.1] now accounting for sub-stochasticity.

Lemma 1. Let S be a finite set of states and R be a relation on S. Let p, ' €
Dist(S). Then, u Cr 1’ iff the mazimum flow in N (u, ', R) is 1.

Thus we can decide s; Zg s2 by computing the maximum flow in N (sy, 52, R).
Using the best known flow algorithm for this type of networks [8/12], one obtains
the overall complexity O(n”/logn) for the algorithm SIMREL [3]. The space

complexity is O(n?).

An improved algorithm for FPSs. We first analyse the behaviour of SIMREL,
in more detail. We consider an arbitrary pair (si, s2), and assume that (s, s2)
stays in relation R throughout the iterations, until the pair is either found not
to satisfy s; Jr s2 or the algorithm terminates with a fix-point. If we let I(,, s,)
denote the number of iterations until either of these happens, then altogether
l(s;,s5) maximum flow algorithms are run for this pair. However, the networks

(s1, S2, -) constructed in successive iterations are very similar, and may often be
identical across iterations: They differ from iteration to iteration only by deletion
of some edges induced by the successive clean up of R. For our particular pair
(s1,82) the network might not change at all in some iterations, because the
deletions from R do not affect their direct successors. We are going to exploit
this observation by an algorithm that re-uses the already computed maximum
flows, in a way that whatever happens is good: If no changes occur to N (s1, s2,),
then the maximum flow is equal to the one in the last iteration. If changes occur,
the preflow algorithm can be applied to get the new maximum flow very fast,
using the maximum flow constructed in the last iteration as a preflow.

To understand the algorithm, we look at the network N (s1,s2, Rinit). Let
Dy, ..., Dy be pairwise disjoint subsets of R, which correspond to the pairs
deleted from Ry in iteration i. Let N(s1, s2, R;) denote N (s1, 82, Rinit) if i = 1,
and N (s1, 82, Ri—1 \ Dj—1) if 1 < i < k+ 1. Let f; denote the maximum flow

162 L. Zhang et al.

of the network N(s1,s2, R;) for ¢ = 1,...,k + 1. We address the problem of
checking |f;] = 1for alli = 1,..., k+1. Very similar to the parametric maximum
algorithm [10, p. 34], our algorithm SMF(y, .,y (sequence of mazimum flows)
for the pair (s1,s2) consists of initialising the preflow f(,, .,y and the distance
function d(y, s,) as for the preflow algorithm, setting ¢ = 0, and repeating the
following steps at most k times:

SMF(sl,SQ)

1. Increase i by 1. If i = 1 go to step 2. Otherwise, for all pairs (u1,u2) € D;_1,
set f(sl,sz)(uhuQ) = 0 and replace the flow f(sl,sz)(u% X/) by f(Sl,SQ)(UQV \)
— f(s1,50) (U1, u2). Set N'(s1, 52, Rj) = N (s1,82, Ri—1\ Di—1). Let f,, ,) and
d(s,,s,) be the resulting flow and final valid distance function.

2. Apply the preflow algorithm to calculate the maximum flow for A (s, s2, R;)
with preflow f(,, s,) and distance function d(q, s,)-

3. If | f(s,,55)| < 1 return false for all j > i. Otherwise, return true and continue
with step 1.

To understand this algorithm, assume ¢ > 1. At step (1.), before we remove the
edges D;_; from the network N(s1,s2, R;—1), we modify the flow f(s, s,), which
is the maximum flow of the network N (s1, s2, Ri—1), by

— setting f(s, s,)(u1,u2) = 0 for all deleted edges (u1,uz2) € D;—1, and
— modifying f(s, s,)(u2,\) such that the flow f, s,) becomes consistent with
the flow conservation rule.

The excess e(v) is increased if there exists w such that (v, w) € D;_1, and un-
changed otherwise. Hence, the modified flow is a preflow. The distance function
d(s,,s,) keeps valid, since by removing the set of edges D;_1, no new residual
edges are induced. This guarantees that, at step (2.), the preflow algorithm finds
a maximum flow over the network N (s1,s2, R;). If |f(s, s,)] < 1 at some iter-
ation 4, then |f(31782)\ < 1 for all iterations j > ¢ because more edges will be
deleted in subsequent iterations. Therefore, at step (3.), the algorithm returns
true and continues with step (1.) if | f(s, s,)| = 1, otherwise, returns false for all
subsequent iterations. We derive the complexity of the algorithm as follows:

Lemma 2. Let Dy,..., Dy be pairwise disjoint subsets of Rz N post(s1) X
post(sa). Let f; denote the flow constructed at the end of step (2.) in iteration i.
Assume that |post(s1)| < |post(sz2)|. The algorithm SMF(q, ,,) correctly computes
mazimum flow f; for N(si,s2,R;) where i = 1,...,k + 1, and runs in time
O(|post (s1)||post (s2)[?).

The improved algorithm SIMREL’s for FPSs is depicted in Fig. @2l The vari-
able [(line 2) denotes the number of iterations of the until-loop, and the set D
(line 9) contains edges removed from R. For every pair (s1,82) € Rinit, the net-
work N (s1, 82, Rinit) (line 4), the flow function f(s1,s5) and the distance function
d(s, s,) are initialised as for the preflow algorithm (line 5). At line 6 a set

Listener,, ;,) = {(u1,u2) | u1 € pre(s1) Auz € pre(s2) A L(uy) = L(uz)}

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 163

SIMRELs(D)
1 R, Rnew — {(51,52) esSxS8 | L(S1) = L(Sg)}

2 1«0 // auxiliary variable to count the number of iterations.
3 for ((s1,s2) € R)
4 Construct the initial network N (s1, 2, Rinit) := N (s1, $2, R)
5 Initialise the flow function f(s, s,) and the distance function d,, s,)
6 Listener(,, o,y < {(u1,u2) | u1 € pre(s1) Auz € pre(s2) A L(u1) = L(u2)}
7 do
8 L+ +
9 D < R\Rpew and R+ Rpew and Rpew «— 0

10 for ((s1,s2) € D)

11 for ((u1,u2) € Listener(,, ,,))

12 D) D) (£ (s 50)}

13 for ((s1,s2) € R)

14 if (SMF(s, s,) returns true on the set Dl(sl’s"’))

15 Ryew «— Rnew U {(51, 52)}.

16 until(Rnpew = R)

17 return R

Fig. 2. Efficient algorithm for deciding strong simulation

is saved, where pre(s) = {t € S | P(t,s) > 0}. The set Listener,, ,,) contains
all pairs (u1,uz2) such that the network A (uy,uz, R) contains the edge (s1,s2).
In lines 10-12, the pair (s1, s2) is inserted into the set Dl(ul’u2) if (s1,s2) € D and

(u1,u2) € Listenery, ,). Dl(ul’u2) contains edges which should be removed to

update the network for (u,uz) in iteration I. At line 14, the algorithm SMF 4,)

constructs the maximum flow for the set Dl(sl’SQ). Note that ! corresponds to i
in SMF. The initialisation of SMF corresponds to lines 4-5. In the first iteration
(in which D§51’52) =0), SMF(q, s, skips the computations in step (1.) and pro-
ceeds directly to step (2.), in which the maximum flow f; for N (s1, s2, Rinit)
is constructed. In iteration I > 1, SMF(y, ,,) takes the set DI(SI’SZ), updates the
flow f;—1 and the network, and constructs the maximum flow f; for the net-
work N (s1, 89, Ry). If SMF (4, s,) Teturns true, (s, s2) is inserted into Rye. and
survives this iteration.

Lemma 3. SIMREL (D) runs in time O(m?n) and in space O(m?). If the
fanout is bounded by a constant, it has complezity O(n?), both in time and space.

Algorithm for DTMCs and CTMCs. We now consider how to handle DTMCs and
CTMCs. Since each DTMC is a special case of an FPS the algorithm SIMREL’,
applies directly. For CTMCs, we replace line 1 of the algorithm by

R, Ryew — {(s1,82) € S x S| L(s1) = L(s2) AR(s1,S5) < R(s2,5)}

to check the rate condition of Definition [6l We arrive at the same complexity.

164 L. Zhang et al.

1

Fig. 3. A CTMC example

Ezample 1. Consider the CTMC in Fig. Bl (it has 10 states) where labels are
indicated by shades of grey. Consider the pair (s1,s2) € Rjnit. The network
N (s1,52, R1) is depicted on the right of the figure. Assume that we get the
maximum flow f; which sends % flow along the path /', uo,uq,\ and % along
/,u1,us, \. Hence, the check for (s1,s2) is successful in the first iteration. The
checks for the pairs (u1,us), (u1,us) and (ug,us) are also successful in the first
iteration. However, the check for the pair (us,u4) is unsuccessful, as no successor
of us has the same label as z1. In the second iteration, the network N (s1, so, R2)
is obtained from N (sy, s2, R1) by deleting the edge (ug,uyq). In N'(s1, 2, R2), the
flows on (ug,u4) and (u4,\) are set to 0, and the vertex us has a positive excess
é. Applying the preflow algorithm, we push the excess from us, along usz, u1, ug
to \. We get a maximum flow fo for N(sy, s, R2) which sends é flow along
the path /', us,u3,\ and é along /', u1,uq4, \. Hence, the check for (s1,s2) is also
successful in the second iteration. Once the fix-point is reached, R still contains

(81782).

4 Algorithms for Deciding Weak Simulation

We now turn our attention to algorithms to decide weak simulation Z.. We
first focus on FPSs before addressing DTMCs and CTMCs. The theoretical
complexity of the algorithms for DTMCs and CTMCs are the same as the one
for FPSs (except for bounded fanout). Nevertheless, we shall present dedicated
algorithms for DTMCs and CTMCs, because their specific properties can be
exploited for significant improvements in practice.

An algorithm for FPSs. The basic weak simulation algorithm SIMREL,, (D) is
obtained by replacing line 5 of SIMRELs(D) in Fig. [l by: if (s1 Sr s2). Thus
instead of checking the pairs w.r.t. X we check them w.r.t. Zr. The latter
check is performed by Ws(D, s1, s2, R), shown in Fig. [

Here, line 1 corresponds to the case that s; has only stutter steps, i.e., K1 = 0:
Assuming post(s1) € R™![s2] we choose Uy = 0,V; = post, (s1) and Uy =
post(s2), Vo = {L} to fulfill the conditions in Definition [7l Hence, s1 Zr s2. If
line 3 is reached in WS, s; has at least one wvisible step, and all successors of
sg can simulate s;. In this case we need to check the reachability condition (3.)
of Definition [which is performed in lines 3-6. Line 7 of the algorithm is only

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 165

WS(D, S1, S2, R)
if (post(s1) € R™'[s2]) return true
if (post(s2) C R[s1])
if (3s € reach(sz2), such that s ¢ R[s1]) return true
Ur « {s] € post(s1) | s1 ¢ R [s2]}
if (Vu1 € U1.3s € reach(sz2), such that s € R[ui]) return true
else return false
return WsFps(D, s1, s2, R)

N O Ut W N

Fig. 4. Algorithm to check whether s; éR So

touched if the checks in line 1 and 2 both return false. In this case, more work
is needed, and this work is delegated to a parametric maximum flow algorithm,
which is called by WSFPS(D, s1, 2, R).

To understand the details of this algorithm, we require a bit of notation.
We focus on a particular pair (s1,$2) € R, where R is the current relation. We
partition the set post | (s;) into MU; (for: must be in U;) and PV; (for: potentially
in V;). The set PV; consists of those successors of s; which can be either put into
Uy or Vi or both. For technical reasons, we assume additionally that L € PV; if
s1 is not stochastic. Hence,

PVi = post (s1) N (R [s2] U{L})

The set MU, equals post | (s1)\PV;1 which consists of the successor states which
can only be placed in U;. The sets PV, and MU, are defined similarly:

PVz = post | (s2) N (R[s:] U{L})

and MUy = post | (s2)\PVa2. Obviously, 6;(u) = 1 for u € MU, for i =1,2.

We write yP to denote a distribution P scaled by a constant v € Rsy.
If 51,82 and R are clear from the context, we let A(y) denote the network
N(P(s1,-),7P(s2,-), R). We say a flow function f of N'(v) is valid for N'(v) iff f
saturates all edges (/',u1) with w3 € MU, and all edges (us,\) with us € MUs.
For v € Ryq, we address the problem of checking whether there exists a valid
flow f for N'(v). This is a feasible flow problem with lower bounds (f saturates
edges to MU; and from MU,) and upper bounds (the capacities) on the flows.
It can be solved by applying a simple transformation to the graph (in time
O(|MU1| + |MUs,|)), solving the maximum flow problem for the transformed
graph, and checking whether the flow is large enough. Details are, for example,
described in [Il, p. 169-170].

If there exists a valid flow f for N (), we say that ~ is valid for N'(y). The
following lemma shows that the algorithm WsFprs(D, s1, s2, R) can be reduced
to checking whether there exists a valid v for A/ (7y).

Lemma 4. If Ws(D, s1, s2, R) reaches line 7, s1 Jr s2 iff there exists a valid

v for N(v). N

166 L. Zhang et al.

In the network N'(v) the capacities of the edges leading to the sink are an
increasing function of a real-valued parameter v. N (v) is a parametric networkd
as described in [10, p. 33]. We recall briefly the breakpoints [10, p. 37-42] of
N (7). Let k(7) denote the minimum cut capacity function, which is the capacity
of a minimum cut as a function of . A breakpoint is a value =y at which the
slope of k() changes. k() is a piecewise-linear concave function with at most
|[V| — 2 breakpoints where |V| denotes the number of vertices of N (7). The
|[V| — 1 or fewer line segments forming the graph of k() correspond to |V| — 1
or fewer distinct cuts. The same minimum cut can be chosen on the same slope
of k(y), and at breakpoints certain edges become saturated or unsaturated. As
we expect, it is sufficient to consider only the breakpoints of N (7):

Lemma 5. There exists a valid v for N'(v) iff one of the breakpoints of N(7)
1s valid.

All of the breakpoints can be obtained by the breakpoint algorithm [10], p. 40],
which we embed into our algorithm WsFPs as follows:

VVSFPS('D7 S1,S89, R)
1. Compute all of the breakpoints by < by < ... < bj of N'(¥).
2. Return true, iff for some ¢ € {1,...,j}, b; is valid for N'(b;).

The following lemma gives the correctness of the algorithm Ws:
Lemma 6. Ws(D, s1, s2, R) returns true iff s1 Jr s2.

For each given breakpoint, we need to solve one feasible flow problem to check
whether it is valid. So overall we apply at most |V| — 2 times feasible flow
algorithms for all breakpoints. Applying a binary search method over the break-
points, a better bound can be achieved where only log(|V|) maximum flow prob-
lems need to be solved. This allows us to achieve the following complexity result:

Lemma 7. SIMREL (D) runs in time O(m?n®) and in space O(n?). If the
fanout g is bounded by a constant, the time complexity is O(n®).

An algorithm for DTMCs. Let D = (S, P, L) be a DTMC. We exploit the absence
of sub-stochasticity in DTMC to arrive at an improved algorithm, in which we
achieve the effect of WsFprs(D, s1, s2, R) via only one maximum flow problem.

Let H denote the sub-relation RN [(post(s1)U{s1}) X (post(s2)U{s2})] which
is the local fragment of the relation R. Now let Ay, As,... A} enumerate the
classes of the equivalence relation (H U H~1)* generated by H where h denotes
the number of classes. W.l.o.g., we assume in the following that A, is the
equivalence class containing s; and ss, i.e., s1,82 € Ap. The following lemma
gives some properties of the sets A; provided that s1 Zr sa:

! In [0} p. 33], the capacities leading to \ is a non-increasing function of v. As in-
dicated in [10] p. 36], if we reverse the directions of all the edges and exchange the
source and sink, the algorithms presented there can be used directly.

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 167

WsDTMc(D, s1, s2, R)

1 Construct the partition Aq,..., A
2 if (h =1) return WsFps(D, s1, s2, R)
3 foreach i+ 1,2,...h—1
4 if (P(s1,A;) = P(s2, A;) = 0) raise error
5 else if (P(s1,A;) =0 or P(s2,A;) =0) return false
6 i — P(s1,A44)
¢ P(s2,4;)
7 if (i # «y; for some i,j < h) return false
8

return true iff v; is valid for N'(71).

else

Fig. 5. Algorithm to check whether s1 Zr s2 tailored to DTMCs

Lemma 8. For (s1,$2) € R, assume that there exists a state s} € post(s1) such
that sy ¢ R™'[sq], and s € post(sa) such that sh & R[s1]. Let Ay, ..., Ay be the
sets constructed for (s1,s2) as above. If s1 Zr s2, the following hold:

1. P(s1,4;) >0 and P(s2, A;) >0 for all i < h

2. ;= Ilg for all i < h where v; = IP)E:;i;

The algorithm WsDTMCcC is presented in Fig. Bl The partition Aj,..., A is
constructed in line 1. If » = 1 (line 2), it is reduced to WSFPsS(D, s1, s2, R).
Lines 3-7 follows directly from Lemma Bl Line 8 follows from the following
lemma, which is the counterpart of Lemma @k

Lemma 9. Assume WsDTMC(D, s1, s2, R) reaches line 7 and h > 1, s1 Zgr s2
iff v is valid for N'(v1).

One might expect that this lemma allows us to establish a better time bound for
DTMCs in the order of log n. This is indeed the case if h > 1 for each pair (s1, $2)
in the initial R;,;:, which is a peculiar structural restriction: the labels of at least
one successor of s; or sy must differ from L(s1) (or s2). In this special case we
can even establish the time bound O(m?n), the same as for strong simulation.

An algorithm for CTMCs. We now discuss how to handle CTMCs. Recall that
in Definition B, we have the rate condition (3’): K1R(s1,5) < KoR(s2,5). To
determine the weak simulation 3., we simplify the algorithm for DTMCs as
follows. If K7 > 0 and K2 = 0, we must have s; Zr s2 because of the rate condi-
tion. Hence, the check of the reachability condition in lines 2—6 of the algorithm
Ws(C, s1, s2, R) can be skipped. At line 7 the algorithm WsDTwMmc(C, s1, $2, R)
is called as before. To check the additional rate condition in WsDTMC we use
the following lemma:

Lemma 10. Assume that s1 Sr s2 in emb(C) and there exists s} € post(si1)
such that s ¢ R Y[sa]. We let Ymin denote the minimal valid breakpoint for
N (Ymin) in emb(C). Then, s1 Ir 2 in C iff Ymin < R(s2,5)/R(s1,9).

~
~

168 L. Zhang et al.

To check the rate condition for the case h > 1, we replace line 8 of the algorithm
WsDTMC by:

return true iff v < R(s2,S)/R(s1,5) and 71 is valid for M(71)

In case h = 1, WsDTMC calls WSFPs(C, s1, s2, R) in line 2. We replace line 2 of
WSsFEPS by:

Return true iff, for some ¢ € {1,...,j5}, b; < R(s2,5)/R(s1,5) and b; is
valid for NV (b;)

to check the rate condition. The existential quantifier corresponds to the minimal
valid breakpoint requirement. Similar to FPSs, a binary search method over the
breakpoints can be used to find the minimal valid breakpoint. As checking the
reachability condition is not required for CTMCs, we get even a better bound
for sparse CTMCs:

Lemma 11. If the fanout g of CTMC C is bounded by a constant, the time
complezity is O(n*).

5 Conclusions

We have introduced efficient algorithms to decide simulation on Markov mod-
els. For sparse models where the fanout is bounded by a constant, we achieve
the complexities O(n?) for strong and O(n*) for weak simulation relations on
CTMCs, and O(n®) for DTMCs, respectively. If instead one uses the original al-
gorithm for weak simulation combined with the polynomial method to solve such
an LP (O(n!? - 7)) [20], one would obtain a time complexity of O(n'* - r) where
r is the maximal binary encoding length of a coefficient of the LP. The weak
simulation algorithm is polynomial in the RAM-model of computation while no
known linear programming based algorithm is.

We believe that the strong and weak simulation algorithms are core contribu-
tions in the quest for model checking techniques of ever larger Markov chains.
Currently, the main bottleneck is the prohibitively unstructured computations
required in the numerical solution phase, resulting in the need to store an n-
dimensional vector of floating point values in memory without much chance for
an efficient symbolic representation [19].

At first sight our situation is worse, since we have to keep flows in the order of
m? across the iterations of our algorithm. But since these flows are resulting from
very local computations (on bipartite, loop-free networks of diameter 3), they
are much more structured, making it possible to utilise symbolic and hashing
techniques effectively in their internal representation. We therefore expect that
the algorithms in this paper can effectively be employed to reduce the — otherwise
prohibitive — size of a Markov chain prior to numerically checking a safe temporal
logic formula. By doing so, we trade time against memory, because the direct
numerical solution is practically of quadratic complexity (in n) — but only if the
above vector fits in memory.

Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations 169

Acknowledgments. The authors are grateful to Bjorn Wachter (Saarland Uni-

ve

rsity) for helpful comments at an early state of this paper.

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20

. R. K. Ahuja, T. L. Magnanti, J. B. Orlin: Network Flows: theory, algorithms, and
applications. Prentice Hall, 1993

A. Aziz, K. Sanwal, V. Singhal, R. K. Brayton: Verifying Continuous Time Markov
Chains. In CAV (1996) 269-276

C. Baier, B. Engelen, M. E. Majster-Cederbaum: Deciding Bisimilarity and Simi-
larity for Probabilistic Processes. J. Comput. Syst. Sci. 60(1) (2000) 187-231

. C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Trans. Software Eng. 29(6) (2003)
524-541

C. Baier and H. Hermanns and J.-P. Katoen: Probabilistic weak simulation is
decidable in polynomial time. Inf. Process. Lett. 89(3) (2004) 123-130

. C. Baier, J.-P. Katoen, H. Hermanns, B. Haverkort: Simulation for Continuous-
Time Markov Chains. In CONCUR (2002) 338-354

C. Baier, J.-P. Katoen, H. Hermanns, V. Wolf: Comparative branching-time se-
mantics for Markov chains. Inf. Comput 200(2) (2005) 149-214

J. Cheriyan, T. Hagerup, K. Mehlhorn: Can a Maximum Flow be Computed in
O(nm) Time? In Proc. ICALP (1990) 235-248

E. M. Clarke, O. Grumberg, D. E. Long: Model Checking and Abstraction. ACM
Transactions on Programming Languages and Systems 16(5) (1994) 1512-1542
G. Gallo, M. D. Grigoriadis, R. E. Tarjan: A fast parametric maximum flow algo-
rithm and applications. STAM J. Comput. 18(1) (1989) 30-55

R. Gentilini, C. Piazza, A. Policriti: From Bisimulation to Simulation: Coarsest
Partition Problems. J. Autom. Reasoning 31(1) (2003) 73-103

A. V. Goldberg: Recent Developments in Maximum Flow Algorithms (Invited Lec-
ture). In SWAT (1998) 1-10

A. V. Goldberg, R. E. Tarjan: A new approach to the maximum-flow problem. J.
ACM 35(4) (1988) 921-940

H. Hansson, B. Jonsson: A Logic for Reasoning about Time and Reliability. Formal
Asp. Comput. 6(5) (1994) 512-535

M. R. Henzinger, T. A. Henzinger, P. W. Kopke: Computing Simulations on Finite
and Infinite Graphs. In FOCS (1995) 453-462

B. Jonsson: Simulations Between Specifications of Distributed Systems. In CON-
CUR (1991) 346-360

B. Jonsson, K. G. Larsen: Specification and Refinement of Probabilistic Processes.
In LICS (1991) 266-277

R. Milner: Communication and Concurrency. Prentice Hall, 1989

D. Parker: Implementation of Symbolic Model Checking for Probabilistic Systems.
University of Birmingham, 2002

. A. Schrijver: Theory of Linear and Integer Programming. Wiley, 1986

Model Checking Probabilistic Timed Automata
with One or Two Clocks*

Marcin Jurdzifiski®, Francois Laroussinie?, and Jeremy Sproston®

! Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

2 Lab. Spécification & Verification, ENS Cachan — CNRS UMR 8643, France
3 Dipartimento di Informatica, Universita di Torino, 10149 Torino, Italy
mju@dcs.warwick.ac.uk, fl@lsv.ens-cachan.fr,
sproston@di.unito.it

Abstract. Probabilistic timed automata are an extension of timed automata with
discrete probability distributions. We consider model-checking algorithms for the
subclasses of probabilistic timed automata which have one or two clocks. Firstly,
we show that PCTL probabilistic model-checking problems (such as determining
whether a set of target states can be reached with probability at least 0.99 re-
gardless of how nondeterminism is resolved) are PTIME-complete for one clock
probabilistic timed automata, and are EXPTIME-complete for probabilistic timed
automata with two clocks. Secondly, we show that the model-checking problem
for the probabilistic timed temporal logic PTCTL is EXPTIME-complete for one
clock probabilistic timed automata. However, the corresponding model-checking
problem for the subclass of PTCTL which does not permit both (1) punctual tim-
ing bounds, which require the occurrence of an event at an exact time point, and
(2) comparisons with probability bounds other than O or 1, is PTIME-complete.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model
of a system satisfies a formally-described property [8]]. Many real-life systems, such
as multimedia equipment, communication protocols, networks and fault-tolerant sys-
tems, exhibit probabilistic behaviour. This leads to the study of probabilistic model
checking of probabilistic models based on Markov chains or Markov decision processes
[2501219I7110L6]). Similarly, it is common to observe complex real-time behaviour in sys-
tems. Model checking of (non-probabilistic) continuous-time systems against properties
of timed temporal logics, which can refer to the time elapsed along system behaviours,
has been studied extensively in, for example, the context of timed automata [3l4], which
are automata extended with clocks that progress synchronously with time. Finally, cer-
tain systems exhibit both probabilistic and timed behaviour, leading to the development
of model-checking algorithms for such systems [2/12410015I5/19]].

In this paper, we aim to study model-checking algorithms for probabilistic timed au-
tomata [[13/15]], a variant of timed automata extended with discrete probability distribu-
tions, or (equivalently) Markov decision processes extended with clocks. Probabilistic

* Supported in part by EPSRC project EP/E022030/1, Miur project Firb-Perf, and EEC project
Crutial.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 1701184, [2007.
(© Springer-Verlag Berlin Heidelberg 2007

Model Checking Probabilistic Timed Automata with One or Two Clocks 171

Table 1. Complexity results for model checking probabilistic timed automata

One clock Two clocks
Reachability, PCTL P-complete EXPTIME-complete
PrcTLY <, >] P-complete EXPTIME-complete

prcr /! EXPTIME-complete EXPTIME-complete
PTCTL[<,>] P-hard, in EXPTIME EXPTIME-complete
PTCTL EXPTIME-complete EXPTIME-complete

timed automata have been used to model systems such as the IEEE 1394 root contention
protocol, the backoff procedure in the IEEE 802.11 Wireless LANSs, and the IPv4 link
local address resolution protocol [14]. The temporal logic that we use to describe prop-
erties of probabilistic timed automata is PTCTL (Probabilistic Timed Computation Tree
Logic) [13]]. The logic PTCTL includes operators that can refer to bounds on exact time
and on the probability of the occurrence of events. For example, the property “a re-
quest is followed by a response within 5 time units with probability 0.99 or greater”
can be expressed by the PTCTL property request = P>¢ g99(F<sresponse). The logic
PTCTL extends the probabilistic temporal logic PCTL [[12{7], and the real-time temporal
logic TcTL [3].

In the non-probabilistic setting, timed automata with one clock have recently been
studied extensively [[17J2111]]. In this paper we consider the subclasses of probabilistic
timed automata with one or two clocks. While probabilistic timed automata with a re-
stricted number of clocks are less expressive than their counterparts with an arbitrary
number of clocks, they can be used to model systems with simple timing constraints,
such as probabilistic systems in which the time of a transition depends only on the time
elapsed since the last transition. Conversely, one clock probabilistic timed automata are
more natural and expressive than Markov decision processes in which durations are as-
sociated with transitions (for example, in [11/19]]). We note that the IEEE 802.11 Wire-
less LAN case study has two clocks [14], and that an abstract model of the IEEE 1394
root contention protocol can be obtained with one clock [23]].

After introducing probabilistic timed automata and PTCTL in Section 2] and Sec-
tion[3] respectively, in Section[we show that model-checking properties of PCTL, such
as the property P> 99(Ftarget) (“a set of target states is reached with probability at
least 0.99 regardless of how nondeterminism is resolved”), is PTIME-complete for one
clock probabilistic timed automata, which is the same as for probabilistic reachability
properties on (untimed) Markov decision processes [22]. We also show that, in general,
model checking of PTCTL on one clock probabilistic timed automata is EXPTIME-
complete. However, inspired by the efficient algorithms obtained for non-probabilistic
one clock timed automata [17]], we also show that, restricting the syntax of PTCTL to
the sub-logic in which (1) punctual timing bounds and (2) comparisons with probability
bounds other than 0 or 1, are disallowed, results in a PTIME-complete model-checking
problem. In Section 3l we show that reachability properties with probability bounds
of 0 or 1 are EXPTIME-complete for probabilistic timed automata with two or more
clocks, implying EXPTIME-completeness of all the model-checking problems that we
consider for this class of models. Our results are summarized in Table [I, where 0/1

172 M. Jurdziniski, F. Laroussinie, and J. Sproston

denotes the sub-logics of PTCTL with probability bounds of 0 and 1 only, and [<, >]
denotes the sub-logics of PTCTL in which punctual timing bounds are disallowed. The
EXPTIME-hardness results are based on the concept of countdown games, which are
two-player games operating in discrete time in which one player wins if it is able to
make a state transition after exactly c time units have elapsed, regardless of the strategy
of the other player. We believe that countdown games may be of independent interest.
Note that we restrict our attention to probabilistic timed automata in which positive
durations elapse in all loops of the system.

2 Probabilistic Timed Automata

Preliminaries. We use R>(to denote the set of non-negative real numbers, N to denote
the set of natural numbers, and A P to denote a set of atomic propositions. A (discrete)
probability distribution over a countable set @ is a function p : @ — [0, 1] such that
> qcq (g) = 1. For a function y1 : @ — Rxo we define support(n) = {q € Q |
1(q) > 0}. Then for an uncountable set @ we define Dist(Q) to be the set of functions
p: Q@ — [0,1], such that support(u) is a countable set and p restricted to support(s)
is a (discrete) probability distribution.

We now introduce timed Markov decision processes, which are Markov decision
processes in which rewards associated with transitions are interpreted as time durations.

Definition 1. A timed Markov decision process (TMDP) T = (S, $init, —, lab) com-
prises a (possibly uncountable) set of states S with an initial state s;,;; € S; a (possibly
uncountable) timed probabilistic, nondeterministic transition relation —C S x R>g x
Dist(S) such that, for each state s € S, there exists at least one tuple (s, ,) €—; and
a labelling function lab : S — 24F.

The transitions from state to state of a TMDP are performed in two steps: given that the
current state is s, the first step concerns a nondeterministic selection of (s,d,v) €—,
where d corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distribution v, as to which state to make the
transition to (that is, we make a transition to a state s’ € S with probability v(s")). We

often denote such a transition by s Y, g,

An infinite or finite path of the TMDP T is defined as an infinite or finite sequence
of transitions, respectively, such that the target state of one transition is the source state
of the next. We use Pathg, to denote the set of finite paths of T, and Pathy,; the set
of infinite paths of T. If w is a finite path, we denote by last(w) the last state of w. For
any path w, let w(%) be its (¢ + 1)th state. Let Path s, (s) refer to the set of infinite paths
commencing in state s € S.

In contrast to a path, which corresponds to a resolution of nondeterministic and prob-
abilistic choice, an adversary represents a resolution of nondeterminism only. Formally,
an adversary of a TMDP T is a function A mapping every finite path w € Pathg, to
a transition (last(w), d,v) €—. Let Adv be the set of adversaries of T. For any adver-
sary A € Adv, let Pathﬁl denote the set of infinite paths resulting from the choices

of distributions of A, and, for a state s € S, let Path;;tl(s) = Pathﬁl N Pathp,(s).
Then we can define the probability measure Prob’ over Pathﬁd(s) (for details, see,

Model Checking Probabilistic Timed Automata with One or Two Clocks 173

for example, [[15]]). Note that, by defining adversaries as functions from finite paths, we
permit adversaries to be dependent on the history of the system. Hence, the choice made
by an adversary at a certain point in system execution can depend on the sequence of
states visited, the nondeterministic choices taken, and the time elapsed from each state,
up to that point.

We distinguish the two classes of TMDP. Discrete TMDPs are TMDPs in which
(1) the state space S is finite, and (2) the transition relation — is finite and of the
form —C S x N x Dist(S). In discrete TMDPs, the delays are interpreted as discrete
jumps, with no notion of a continuously changing state as time elapses. The size |T|
of a discrete TMDP T is |S| + | — |, where | — | includes the size of the encoding
of the timing constants and probabilities used in —: the timing constants are written
in binary, and, for any s,s’ € S and (s, d, v), the probability v(s’) is expressed as a
ratio between two natural numbers, each written in binary. We let T“ be the untimed
Markov decision process (MDP) corresponding to the discrete TMDP T, in which each

transition (s, d, v) €— is represented by a transition (s,). We define the accumulated

o . e do, di, .
duration DiscDur(w,) along the infinite path w = sy —— §; — ... of T until

the (i+1)-th state to be the sum ;. ; dk. A discrete TMDP is structurally non-Zeno

. do,v dn,Un
when any finite path of the form sy —— s1--- —>" s,,,1, such that s, ;1 = s,

satisfies > |, ,, di > 0. Continuous TMDPs are infinite-state TMDPs in which any

.. d, . . .
transition s —— s’ describes the continuous passage of time, and thus a path w =

do, dy, o e .
S0~ g S, . describes implicitly an infinite set of visited states. In the sequel,

we use continuous TMDPs to give the semantics of probabilistic timed automata.

Syntax of Probabilistic Timed Automata. Let X be a finite set of real-valued vari-
ables called clocks, the values of which increase at the same rate as real-time. The set
Uy of clock constraints over X is defined as the set of conjunctions over atomic formu-
lae of the form = ~ ¢, where z,y € X, ~€ {<,<,>,> =}, andc € N.

Definition 2. A probabilistic timed automaton (PTA) P = (L,l, X, inv, prob, L) is a
tuple consisting of a finite set L of locations with the initial location | € L; a finite
set X of clocks; a function inv : L — Wy associating an invariant condition with
each location; a finite set prob C L x Wy x Dist(2¥ x L) of probabilistic edges such
that, for each | € L, there exists at least one (I, ,) € prob; and a labelling function
L:L— 24F,

A probabilistic edge (I, g,p) € prob is a triple containing (1) a source location [, (2)
a clock constraint g, called a guard, and (3) a probability distribution p which assigns
probability to pairs of the form (X, ") for some clock set X and target location I’. The
behaviour of a probabilistic timed automaton takes a similar form to that of a timed
automaton [4]: in any location time can advance as long as the invariant holds, and
a probabilistic edge can be taken if its guard is satisfied by the current values of the
clocks. However, probabilistic timed automata generalize timed automata in the sense
that, once a probabilistic edge is nondeterministically selected, then the choice of which
clocks to reset and which target location to make the transition to is probabilistic.

The size |P| of the PTA P is |L| 4+ |X| + |inv| + |prob|, where |inv| represents
the size of the binary encoding of the constants used in the invariant condition, and

174 M. Jurdziniski, F. Laroussinie, and J. Sproston

|prob| includes the size of the binary encoding of the constants used in guards and the
probabilities used in probabilistic edges. As in the case of TMDPs, probabilities are
expressed as a ratio between two natural numbers, each written in binary.

A PTA is structurally non-Zeno [24] if, for every sequence Xy, (o, g0,P0), X1,
(li,91,91), -, Xy (Lny Gny D)s such that p;(X;41,0;41) > 0for 0 < ¢ < n, and
pn(Xo,lo) > 0, there exists a clock ¢ € X and 0 < ¢,7 < n such that x € X; and
g; = x > 1 (thatis, g; contains a conjunct of the form = > ¢ for some ¢ > 1). We use
1C-PTA (resp. 2C-PTA) to denote the set of structurally non-Zeno PTA with only one
(resp. two) clock(s).

Semantics of Probabilistic Timed Automata. We refer to a mapping v : X — R>g
as a clock valuation. Let RZ, denote the set of clock valuations. Let 0 € R, be the
clock valuation which assigns 0 to all clocks in X. For a clock valuation v € R
and a value d € R>, we use v + d to denote the clock valuation obtained by letting
(v+d)(z) = v(x) + d forall clocks 2z € X. For a clock set X C X, we let v[X := 0]
be the clock valuation obtained from v by resetting all clocks within X to 0; more
precisely, we let v[X := 0](z) = 0 for all x € X, and let v[X := 0](z) = v(z) for
all z € X\ X. The clock valuation v satisfies the clock constraint 1p € Wy, written
v = 1, if and only if ¢ resolves to true after substituting each clock x € X with the
corresponding clock value v(x).

Definition 3. The semantics of the probabilistic timed automaton P = (L, 1, X, inv,
prob, L) is the continuous TMDP T[P] = (S, sinit, —, lab) where:

- S={(l,v) |l € Landv € R, s.t. v = inv(l)} and sinie = (1,0);
— — is the smallest set such that ((I,v),d,) €— if there exist d € Rxq and a
probabilistic edge (1, g,p) € prob such that:
1. v+dEgandv+d Einv(l) forall 0 < d < d;
2. for any (X,l') € 2% x L, we have that p(X,l') > 0 implies (v + d)[X =
0] = inv(l’);
3. forany (I',v') € S, we have that p(I',v') = 3~y creset(v,d,01) P(X, U'), where
Reset(v,d,v') ={X C X | (v+d)[X :=0] ="}
— lab is such that lab(l,v) = L(l) for each state (I,v) € S.
Given a path w = (lo, vp) Jonvo, (I, v1) DV of T[P], for every i, we use
w(i,d), with 0 < d < d;, to denote the state (I;,v; + d) reached from (I;,v;) after
delaying d time units. Such a pair (¢,d) is called a position of w. We define a total
order on positions: given two positions (¢, d), (4,d’) of w, the position (¢, d) precedes
(j,d') — denoted (i,d) <. (j,d') — if and only if either i < j,ori = jand d < d'.
Furthermore, we define the accumulated duration CtsDur(w, ¢, d) along the path w until
position (i, d) to be the sum d + >, _; d.

3 Probabilistic Timed Temporal Logic

We now proceed to describe a probabilistic, timed temporal logic which can be used to
specify properties of probabilistic timed automata [[15].

Model Checking Probabilistic Timed Automata with One or Two Clocks 175

Definition 4. The formulae of PTCTL (Probabilistic Timed Computation Tree Logic)
are given by the following grammar:

pu=aldNd| 0| Puc(PUncod)

where a € AP is an atomic proposition, <€ {<, <, > >} ~e {<,=,>}, (€ [0,1]
is a probability, and c € N is a natural number.

We use standard abbreviations such as true, false, ¢1 V ¢, ¢p1 = o2, and
Poac (Facd) (for Puoe(trueU.¢)). Formulae with “always” temporal operators G...
can also be written; for example P>¢(G~.¢) can be expressed by P<q1_¢(Fcm¢)).
The modalities U, F and G without subscripts abbreviate U>q, F>o and G>¢, respec-
tively. We refer to PTCTL properties of the form Py (Fa) or —Puoc (Fa) as (untimed)
reachability properties. When ¢ € {0, 1}, these properties are referred to as qualitative
reachability properties.

We define PTCTL[<, >] as the sub-logic of PTCTL in which subscripts of the form
= ¢ are not allowed in modalities U, F-., G~.. We define PTCTL0/1[§7 >] and
PrctL?? as the qualitative restrictions in which probability thresholds ¢ belong to
{0,1}. Furthermore PCTL is the sub-logic in which there is no timing subscript ~ ¢
associated with the modalities U, F, G. The size |®| of @ is defined in the standard way
as the number of symbols in @, with each occurrence of the same subformula of & as a
single symbol.

We now define the satisfaction relation of PTCTL for discrete and continuous
TMDPs.

Definition 5. Given a discrete TMDP T = (S, Sinit, —, lab) and a PTCTL formula P,
we define the satisfaction relation =1 of PTCTL as follows:

skETa iff a € lab(s)

sETP1 APy iff s =1 Py and s =1 Do

s 1 9 iff s er @

5 =1 Poac() iff Probi{w e Pathﬁd(s) |w ET @}, VA € Adv

wET P1U Do iff Ji € Ns.t. w(i) 1 ¢2, DiscDur(w,i) ~ ¢,
andw(j) E1 1, Vj <i.

Definition 6. Given a continuous TMDP T = (S, Sinit, —, lab) and a PTCTL formula
&, we define the satisfaction relation =1 of PTCTL as in Definition 3 except for the
following rule for ®1U .. Dy

w T P1U D2 iff I position (i, 6) of w s.t. w(i,8) =1 ¢2, CtsDur(w,i,6) ~ ¢,
and w(j,8") =1 ¢1, V positions (§,8") of w s.t. (4,6") <., (i,9) .

When clear from the context, we omit the T subscript from 1. We say that the
TMDP T = (S, Sinit, —, lab) satisfies the PTCTL formula &, denoted by T | &,
if and only if s;,;; = . Furthermore, the PTA P satisfies @, denoted by P = &,
if and only if T[P] = ¢&. Given an arbitrary structurally non-Zeno PTA P, model
checking PTCTL formulae is in EXPTIME [15] (the algorithm consists of executing
a standard polynomial-time model-checking algorithm for finite-state probabilistic sys-
tems [[706] on the exponential-size region graph of P). Qualitative reachability problems
are EXPTIME-complete for PTA with an arbitrary number of clocks [20].

176 M. Jurdziniski, F. Laroussinie, and J. Sproston

4 Model Checking One Clock Probabilistic Timed Automata

In this section we consider the case of 1C-PTA. We will see that model checking PCTL
and PrcTL?/! [<, >] over 1C-PTA is P-complete (where the lower bound follows from
the fact that qualitative reachability properties are P-hard for MDPs [22]]), but remains
EXPTIME-complete for the logic PtcTL/!. First we have the following result about
the model-checking of PCTL formulae.

Proposition 1. The PCTL model-checking problem for 1C-PTA is P-complete.

4.1 Model Checking PTcTL®/![<, >] on 1C-PTA

In this section, inspired by related work on timed concurrent game structures [[L6], we
first show that model-checking PTCTLY/}[<, >] properties of discrete TMDPs can be
done efficiently. Then, in Theorem [I] using ideas from the TMDP case, we show that
model checking PTcTL?/? [<, >] on 1C-PTA can also be done in polynomial time.

Proposition 2. Let T = (S, sinit, —, lab) be a structurally non-Zeno discrete TMDP
and ® be a PTcTLY/[<, >] formula. Deciding whether T |= & can be done in time
o(@]-[S]-1—= 1)

Proof (sketch). The model-checking algorithm is based on several procedures to deal
with each modality of PrcTLY/! [<, >]. The boolean operators and the PCTL modali-
ties (without timed subscripts) can be handled in the standard manner, with the PCTL
properties verified on the untimed MDP T“ corresponding to T. For formulae
Poac (@1U~P2), we assume that the truth values of subformulae ¢ and @, are known
for any states of T. First, given that the TMDP is structurally non-Zeno, we
have the equivalences P<o(®1U~c®P2) = —-EP1U_ Py and P>y (P1UcP2) =
AP U c(P>1(P1UP3)), where E (resp. A) stands for the existential (resp. universal)
quantification over paths which exist in the logic TCTL. Thus we can apply the pro-
cedure proposed for model checking TCTL formulae — running in time O(|S| - | — |)
— over weighted graphs [18] (in the case of P>q(P1U~.P2), by first obtaining
the set of states satisfying P>(®;U®P2), which can be done on T* in time

O(Z(s,d,:/)eﬁ |support(v)|)).

The problem of verifying the remaining temporal properties of PTCTL?/![<, >] can
be considered in terms of turn-based 2-player games. Such a game is played over the
space S U —, and play proceeds as follows: from a state s € S, player P,, chooses
a transition (s, d,) €—; then, from the transition (s, d, v), player P, chooses a state
s’ € support(v). The duration of the move from s to s’ via (s,d,v) is d. Notions of
strategy of each player, and winning with respect to (untimed) path formulae of the
form @, U@y, are defined as usual for 2-player games.

For the four remaining formulae, namely Prqc (P1U~cP2) for ¢ € {> 0,< 1},
and ~€ {<, >}, we consider the functions o, 8,7,8 : S — N, for representing min-
imal and maximal durations of interest. Intuitively, for a state s € S, the value a(s)
(resp. v(s)) is the minimal (resp. maximal) duration that player P, can ensure, re-
gardless of the counter-strategy of P,,, along a path prefix from s satisfying $, U,
(resp. P1U(Pso(@1UDg))). Similarly, the value G(s) (resp. 6(s)) is the minimal

Model Checking Probabilistic Timed Automata with One or Two Clocks 177

(resp. maximal) duration that player P, can ensure, regardless of the counter-strategy
of P, along a path prefix from s satisfying $; UP, (resp. &1U(—P<1(P1 U@g))).E]
Using the fact that the TMDP is structurally non-Zeno, for any state s € S, we
can obtain the following equivalences: s = Pso(P1U<.P2) if and only if a(s) < ¢;
s = Pe1(P1U<D2) if and only if B(s) > ¢; s = Pso(@1Us.P2) if and only if
v(s) > ¢ s = Py (@1Us Do) if and only if §(s) < c. The functions «, 3,7, 6 can
be computed on the 2-player game by applying the results of [[16] on timed concurrent
game structures: for each temporal operator Pyqc (@1 U~ P2), this computation runs in
time O(|S| - | — |). O

We use Proposition[2]to obtain an efficient model-checking algorithm for 1C-PTA.

Theorem 1. Let P = (L,1, X, inv, prob, L) be a 1C-PTA and ® be a PrcTL?/! (<, >]
SJormula. Deciding whether P |= ® can be done in polynomial time.

Proof (sketch). Our aim is to label every state (I, v) of T[P] with the set of subformulae
of @ which it satisfies (as |X'| = 1, recall that v is a single real value). For each location
I € L and subformula ¥ of &, we construct a set Sat[l, %] C R> of intervals such that
v € Sat[l,¥] if and only if (I,v) = ¥. We write Sat[l,¥] = ,_, _,(¢;j;c}) with
(e {[,(} and) € {],)}. We consider intervals which conform to the following rules:
for1 < j <k, we have ¢; < c; and cj,c;- € NU{oo},and for 1 < j < k, we have
¢j < c¢j+1. We will see that [Sat[l, 7]| —i.e. the number of intervals corresponding to a
particular location — is bounded by || - 2 - | prob|.

The cases of obtaining the sets Sat[l, @] for boolean operators and atomic proposi-
tions are straightforward, and therefore we concentrate on the verification of subfor-
mulae ¥ of the form Py (P1U~.P2). Assume that we have already computed the sets
Sat[, | for @1 and P2. Our aim is to compute Sat[l, ¥] for each location [€ L.

There are several cases depending on the constraint ‘o< (7. The equivalence
P<o(@1UcP2) = -EP1 U P2 can be used to reduce the “< 0” case to the appropriate
polynomial-time labeling procedure for =E®; U...®2 on one clock timed automata [17].
In the “> 1” case, the equivalence P>1 (91U cP2) = AD1Uc(P>1(P1UD3)) relies
on first computing the state set satisfying P> (#,Ud5), which can be handled using a
qualitative PCTL model-checking algorithm, applied to a discrete TMDP built from P,
Sat[l, @1] and Sat[l, P}, in time O(|P| - |prob|- (|P1|+ |P2])), and second verifying the
formula A®1 U (P>1(91UP2)) using the aforementioned method for one clock timed
automata.

For the remaining cases, our aim is to construct a (finite) discrete TMDP T" =
(87, ,—",lab"™), which represents partially the semantic TMDP T[P], for which the
values of the functions «, 3, vy and § of the proof of Proposition[2 can be computed, and
then use these functions to obtain the required sets Sat[, ¥] (the initial state of T" is
irrelevant for the model-checking procedure, and is therefore omitted). The TMDP T"
will take a similar form to the region graph MDP of PTA [15]], but will be of reduced

UIf there is no strategy for player P, (resp. player P,) to guarantee the satisfaction of
&1UP, along a path prefix from s, then we let a(s) = oo (resp. B(s) = oo). Similarly,
if there is no strategy for player P, (resp. player P,) to guarantee the satisfaction of
D1U(P>o(P1UP2)) (resp. P1U(—P<1(P1UP2))) along a path prefix from s, then we let
~v(s) = —oo (resp. 6(s) = —o0).

178 M. Jurdziniski, F. Laroussinie, and J. Sproston

size (the size will be independent of the magnitude of the constants used in invariants
and guards): this will ensure a procedure running in time polynomial in |P|.

We now describe the construction of T". In the following we assume that the sets
Sat|[l, ;] contain only closed intervals and that the guards and invariant of the PTA
contain non-strict comparisons (and possibly intervals of the form [b; 00)). The gen-
eral case is omitted for reasons of space. Formally we let B = {0} U Cst(P) U
Uieq1,2y Uier, Cst(Sat[l, ®;]), where Cst(P) is the set of constants occurring in the
clock constraints of P, and where Cst(Sat[l, ®;]) is the set of constants occurring as end-
points of the intervals in Sat[l, @;]. Moreover for any right-open interval [b; o) occur-
ring in some Sat[l, |, we add the constant b+c+1 in B. We enumerate B as bg, b1, ...bas
with by = 0 and b; < b;4; for i < |B|. Note that |B| is bounded by 4 - |¥| - |prob|. For
any interval (b;; b;11) and clock constraint ¢ € W, we let (b;;b,41) = ¢ if v = 2 for
allv € (bz, bi+1).

Considering the discrete TMDP corresponding to T[P] restricted to states (I, b;), with
b; € B, is sufficient to compute the values of functions «, 3, v and § in any state (I, b;).
However, this does not allows us to deduce the value for any intermediate states in
(bs; bi+1): indeed some probabilistic edges enabled from b; may be disabled inside the
interval. Therefore, in T, we have to consider also (I, ;") and (I, b; ;) corresponding
respectively to the leftmost and rightmost points in (b;; b;11) (When ¢ < M). Then S”
is defined as the pairs (I, b;) with b; € B and b; |= inv(1), and (1,b;") and (1, b;, ;) with
b € B,i < M and (b;;b;41) = inv(l). Note that the truth value of any invariant is
constant over such intervals (b;; b;11). Moreover note that all T[P] states of the form
(I,v) with v € (b;;b;41) satisfy the same boolean combinations of ¢; and $5, and
enable the same probabilistic edges. For any (I,g,p) € prob, we write b; = g (and
biy1 E 9) when (bi;biy1) |= g. Similarly, we write b} = inv(l) (and b;, = inv(l))
when (b;;b;11) = inv(l). We also consider the following ordering by < bf < by <
by < bf < -+ < by < by < bi,. We now define the set —" of transitions of T" as
the smallest set such that (I, \), d,) €—", where A € {b;,b;, b;"} for some b; € B,
if there exists \" > A, where \ € {b;, b;, bj} for some b; € B, and (,g,p) € prob
such that:

-d="b; -,

— for each (X,
if X = (;

— for each (I';\") € S", we have v(I',\") = vo(I’,\") + va(lI’,\"), where
vo(l', ") = p(l',{x}) if X = [0,0] and vo(I’,\') = 0 otherwise, and
vaA(l', N7 = p(7,0) if X = X and vy (I', \) = 0 otherwise.

Finally, to define lab", for a state (I,b;), we let ag, € lab"(l,b;) if and only if
b; € Sat(l,®;], for j € {1,2}. The states ({,b;") and (I, b;) are labeled depending on
the truth value of the ®;’s in the interval (b;; b;y1):if (bs; bi1) C Sat[l, @], thenag; €
lab”(1,b;") and ag, € lab"(1,b; ;). Note that given the “closed intervals” assumption
made on Sat[l, ®;], we have lab"(1,b;) C lab"(1,b;) and lab” (1,b;, ;) C lab"(l,b;).
Note that the fact that P is structurally non-Zeno means that T" is structurally non-Zeno.
The size of T" is in O(|P|? - |¥]).

Now we can apply the algorithms defined in the proof of Proposition [2] and obtain
the value of the coefficients «, 3, v or 6 for the states of T”. Our next task is to define

N Eg,and)\’ = inv(l) forany A <) < N
I") € support(p), we have 0 |= inv(l’) if X = {x}, and X |= inv(l')

Model Checking Probabilistic Timed Automata with One or Two Clocks 179

functions «, 3,7,6 : S — Rx(, where S is the set of states of T[P], which are ana-
logues of a, (3, v or 6 defined on T[P]. Our intuition is that we are now considering
an infinite-state 2-player game, with players P, and P, as in the proof of Proposi-
tion 2] over the state space of T[P]. Consider location I € L. For b € B, we have
a(l,b) = a(l,b), B(1,b) = B(,b), v(I,b) = v(I,b) and 6(I,b) = (1, b). For inter-
vals of the form (b;;b;4+1), the functions v and ¢ will be decreasing (with slope -1)
throughout the interval, because, for all states of the interval, the optimal choice of
player P, is to delay as much as possible inside any interval. Hence, the value «(l,v)
forv € (bi; bit1) is defined entirely by a(l, b, ;) as a(l,v) = a(l, b; ;) —biy1+bi+v.
Similarly, 6(1,v) = 6(1,b; ;) — bit1 + b; +v.

Next we consider the values of § and ~y over intervals (b;;b;11). In this case, the
functions will be constant over a portion of the interval (possibly an empty portion,
or possibly the entire interval), then decreasing with slope -1. The constant part cor-
responds to those states in which the optimal choice of player P, is to take a prob-
abilistic edge, whereas the decreasing part corresponds to those states in which it is
optimal for player P, to delay until the end of the interval. The value §(I,v) for
v € (bi;bit1) is defined both by ((1, b)) and B(1,b;,,) as B(l,v) = B(l,b]) if
bi <v < biyr — (B(1,67) = B(L, B31)), and as B(L,v) = B(L, Biy1) — (v = B(L,b]))
otherwise. An analogous definition holds also for ~.

From the functions «, 3, v and ¢ defined above, it becomes possible to define
Sat[l,¥] by keeping in this set of intervals only the parts satisfying the thresholds
< ¢ > ¢, > cand < c, respectively, as in the proof of Proposition 2l We can show
that the number of intervals in Sat[l, ¥] is bounded by 2 - |¥| - |prob|. For the case in
which a function «, (3, 7y or ¢ is decreasing throughout an interval, then an interval in
Sat[l, 4] which corresponds to several consecutive intervals in T” can provide at most
one (sub)interval in Sat[l, ¥], because the threshold can cross at most once the function
in at most one interval. For the case in which a function § or v combines a constant
part and a part with slope -1 within an interval, the threshold can cross the function
in several intervals (b;; b;41) contained in a common interval of Sat[l, $1]. However,
such a cut is due to a guard = > k of a given transition, and thus the number of cuts in
bounded by |prob|. Moreover a guard 2z < k may also add an interval. Thus the number
of new intervals in Sat[g, ¥] is bounded by 2 - |prob|.

In addition to these cuts, any interval in Sat[l, $o] may provide an interval in
Sat[l, ¥]. This gives the 2 - [¥| - |prob| bound for the size of Sat[l, ¥]. |

Corollary 1. The PTcTLY (<, >] model-checking problem for 1C-PTA is P-complete.

4.2 Model Checking PTcTL®/* on 1C-PTA

We now consider the problem of model-checking PrcTL/? properties on 1C-PTA. An
EXPTIME algorithm for this problem exists by the definition of a MDP analogous to
the region graph used in non-probabilistic timed automata verification [[15]. We now
show that the problem is also EXPTIME-hard by the following three steps. First we
introduce countdown games, which are a simple class of turn-based 2-player games
with discrete timing, and show that the problem of deciding the winner in a countdown
game is EXPTIME-complete. Secondly, we reduce the countdown game problem to the

180 M. Jurdziniski, F. Laroussinie, and J. Sproston

PtcTL’/! problem on TMDPs. Finally, we adapt the reduction to TMDPs to reduce
also the countdown game problem to the PrcrL?/? problem on 1C-PTA.

A countdown game C consists of a weighted graph (S, T), where S is the set of states
and T C S x N\ {0} x S is the transition relation. If t = (s,d,s’) € T then we
say that the duration of the transition t is d. A configuration of a countdown game is
a pair (s, ¢), where s € S is a state and ¢ € N. A move of a countdown game from a
configuration (s, ¢) is performed in the following way: first player 1 chooses a number
d, such that 0 < d < cand (s,d,s’) € T, for some state s’ € S; then player 2 chooses
a transition (s, d,s’) € T of duration d. The resulting new configuration is (s’, ¢ — d).
There are two types of terminal configurations, i.e., configurations (s, ¢) in which no
moves are available. If ¢ = 0 then the configuration (s, ¢) is terminal and is a winning
configuration for player 1. If for all transitions (s, d, s”) € T from the state s, we have
that d > ¢, then the configuration (s, ¢) is terminal and it is a winning configuration for
player 2. The algorithmic problem of deciding the winner in countdown games is, given
a weighted graph (S, T) and a configuration (s, c¢), where all the durations of transitions
in C and the number c are given in binary, to determine whether player 1 has a winning
strategy from the configuration (s, ¢). If the state from which the game is started is
clear from the context then we sometimes specify the initial configuration by giving the
number c alone.

Theorem 2. Deciding the winner in countdown games is EXPTIME-complete.

Proof (sketch). Observe that every configuration of a countdown game played from a
given initial configuration can be written down in polynomial space and every move can
be computed in polynomial time; hence the winner in the game can be determined by a
straightforward alternating PSPACE algorithm. Therefore the problem is in EXPTIME
because APSPACE = EXPTIME.

We now prove EXPTIME-hardness by a reduction from the acceptance of a word by
a linearly-bounded alternating Turing machine. Let M = (X, Q, qo, qace, @3, Qv, A)
be an alternating Turing machine, where X is a finite alphabet,) = Q3 U Qv is a finite
set of states partitioned into existential states ()3 and universal states Qv, go € @ is an
initial state, ¢, € @ is an accepting state, and A C Q x X' x Q x X x {L, R} is
a transition relation. Let B > 2 - |@ X X| be an integer constant and let w € X"
be an input word. W.L.o.g. we can assume that M uses exactly n tape cells when
started on the word w, and hence a configuration of M is a word bgoby ---b,_1 €
(ZUu@xX)" Let () : (U@ x2X)— {0,1,...,B — 1} be an injection. For
every a € XY U (@ x X, it is convenient to think of (a) as a B-ary digit, and we can
encode a configuration u = bgb;---b,_1 € (X U Q x X)™ of M as the number
N(u) = Y7 {bi) - B,

Letz € N,0 <7 < n,be a tape cell position, and let a € X U Q x X. We de-
fine a countdown game Check”?, such that for every configuration u = bg---by_1
of M, player 1 has a winning strategy from the configuration (s;®, N (u)) of the game
Check™® if and only if b; = a. The game Check"® has states S = { s§®,...,s52 },
and for every k, 0 < k < n, we have a transition (si’a, d, s}cil) € T, if:

J (a) - BF ifk =1,
~ | (b)-B* ifk#iandbe XUS x X.

Model Checking Probabilistic Timed Automata with One or Two Clocks 181

There are no transitions from the state siia. Observe that if b; = a then the win-
ning strategy for player 1 in game Check"® from N (u) is to choose the transitions
(sy®, by - BX, sp31). forall k, 0 < k < n. If, however, b; # a then there is no way for
player 1 to count down from N (u) to 0 in the game Check’?.

Now we define a countdown game Cjy, such that M accepts w = 0901 ...0,-1
if and only if player 1 has a winning strategy in Cp; from configuration (qo, N (u)),
where v = (qo,00)01 . ..0,—1 is the initial configuration of M with input w. The
main part of the countdown game Cj; is a gadget that allows the game to simulate one
step of M. Note that one step of a Turing machine makes only local changes to the
configuration of the machine: if the configuration is of the form v = ag...a,_1 =
00...0i-1(q,04)0i4+1 ...0n_1, then performing one step of M can only change en-
tries in positions ¢ — 1, ¢, or ¢ + 1 of the tape. For every tape position ¢, 0 < ¢ < n, for
every triple 7 = (0i-1,(¢,04),0i+1) € ¥ x (Q x X) x X, and for every transition
t = (q,0,q,0',D) € A of machine M, we now define the number d;'", such that if
0; = o and performing transition ¢ at position ¢ of configuration w yields configura-
tion ' = bg...b,_1, then N(u) — dy” = N(u’). For example, assume that i > 0
and that D = L; we have that b, = a; = oy, forall k & {i — 1,4,4+ 1} and
biy1 = a;41 = 0i41. Moreover we have that b;_; = (¢’,0;_1), and b; = o’. We
define d;’" as follows:

((bi1) —(a;i—1)) - B" "+ ((bi) — (a;) - B’
(¢ oi-1)) = {oi-1)) - B+ ({0") — ((g,04))) - B".

The gadget for simulating one transition of M from a state ¢ € Q \ { qqcc } has
three layers. In the first layer, from a state ¢ € @ \ { qacc }» player 1 chooses a pair
(i,7), where ¢, 0 < i < n, is the position of the tape head, and 7 = (a,b,c) €
Y x (Q x X) x X is his guess for the contents of tape cells ¢ — 1, ¢, and 7 + 1. In
this way the state (g, ¢, 7) of the gadget is reached, where the duration of this transition
is 0. Intuitively, in the first layer player 1 has to declare that he knows the position @
of the head in the current configuration as well as the contents 7 = (a, b, c) of the
three tape cells in positions ¢ — 1, 4, and 7 + 1. In the second layer, in a state (g, %, T)
player 2 chooses between four successor states: the state (g, ¢, 7, *) and the three sub-
games Check’™ 12 Check®?, and Check’*'°. The four transitions are of duration 0.
Intuitively, in the second layer player 2 verifies that player 1 declared correctly the con-
tents of the three tape cells in positions ¢ — 1, ¢, and 7 + 1. Finally, in the third layer, if
q € Q3 (resp., ¢ € Qv), then from a state (g, 7, 7, x) player 1 (resp., player 2) chooses
a transition t = (q,0,¢’,0’, D) of machine M, such that b = (g, o), reaching the state
¢ € Q of the gadget, with a transition of duration d;’".

Note that the gadget described above violates some conventions that we have adopted
for countdown games. Observe that durations of some transitions in the gadget are 0
and the duration d;’” may even be negative, while in the definition of countdown games
we required that durations of all transitions are positive. In order to correct this we
add the number B™ to the durations of all transitions described above. This change
requires a minor modification to the subgames Check’?®: we add an extra transition
(sha, B™ sh2). We need this extra transition because instead of starting from (qo,

n
N (u)) as the initial configuration of the game Cjs, where v is the initial configuration

3, T
dt

182 M. Jurdziniski, F. Laroussinie, and J. Sproston

of M running on w, we are going to start from the configuration (qq, B> + N (u)). In
this way the countdown game can perform a simulation of at least B™ steps of M ; note
that B™ is an upper bound on the number of all configurations of M.

W.Lo.g., we can assume that whenever the alternating Turing machine M accepts an
input word w then it finishes its computation with blanks in all tape cells, its head in
position 0, and in the unique accepting state q,..; We write w4, for this unique accept-
ing configuration of machine M. Moreover, assume that there are no transitions from
Gace in M. In order to complete the definition of the countdown game G/, we add a
transition of duration N (u4..) from the state g, of game Cyy. 0O

Proposition 3. The prcrL?/? model-checking problem for structurally non-Zeno dis-
crete TMDPs is EXPTIME-complete.

Proof. An EXPTIME algorithm can be obtained by employing the algorithms of [19].
We now prove EXPTIME-hardness of PrcTL?/! model checking on discrete TMDPs
by a reduction from countdown games. Let C = (S, T) be a countdown game and (s, ¢)
be its initial configuration. We constructa TMDP T¢ (s o) = (S, Sinit, —, lab) such that
player 1 wins C from (s, ¢) if and only if T¢ (5 .y F "P<1(F=ctrue). Let S = S and
Sinit = s. We define — to be the smallest set satisfying the following: for each s € S
and d € Nsg, if (s,d,s’) € T for some s’ € T, we have (s,d,v) €—, where v is an
arbitrary distribution over S such that support(v) = {s’ | (s,d, s’) € T}. The labelling
condition lab is arbitrary. Then we can show that player 1 wins from the configuration
(s,c) if and only if there exists an adversary of T¢ (5) such that a state is reached
from s;,;; = s after exactly c time units with probability 1. The latter is equivalent to
Sinit = P<1(F=ctrue). m]

We now show that the proof of Proposition [3| can be adapted to show the EXPTIME-
completeness of the analogous model-checking problem on 1C-PTA.

Theorem 3. The PrtcTLY/! model-checking problem for 1C-PTA is EXPTIME-
complete.

Proof. Recall that there exists an EXPTIME algorithm for model-checking PrcTL/!
properties on PTA; hence, it suffices to show EXPTIME-hardness for PrctL/t and
1C-PTA. Let C be a countdown game with an initial configuration (s, c). We con-
struct the 1C-PTA Pl(/z o = (L, [,{z}, inv, prob, L) which simulates the behaviour
of the TMDP T¢ (5. of the proof of Proposition 3] in the following way. Each state

s € S of T (s,¢) corresponds to two distinct locations I} and 12 of PICE ¢)» and we let

= {li | s € s} fori € {1,2}. Let [= I}. For every transition (s,d,v) €— of

TC (s,c)» We have the probablhstlc edges (11,2 = 0,p!), (12,2 = d,p?) € prob, where
({m} 2) =1,and p*({z},1L,) = v(s') for each location s’. For each state s € S, let
mv(l;) = (z < 0) and inv(I2) = (z < d). That is, the PTA P}:)CES’C) moves from the
location I} to I2 instantaneously. Locations in L! are labelled by the atomic proposi-
tion a, whereas locations in L? are labelled by (). Then we can observe that Péﬁsyc) =
—P.1(F=ca) if and only if T¢ (50 F —P<i1(F=ctrue). As the latter problem has
been shown to be EXPTIME-hard in the proof of Proposition[3] we conclude that model
checking PTcTLY/! on 1C-PTA is also EXPTIME-hard. i

Model Checking Probabilistic Timed Automata with One or Two Clocks 183
5 Model Checking Two Clocks Probabilistic Timed Automata

We now show EXPTIME-completeness of the simplest problems that we consider on
2C-PTA.

Theorem 4. Qualitative probabilistic reachability problems for 2C-PTA are
EXPTIME-complete.

Proof. EXPTIME algorithms exist for probabilistic reachability problems on PTA, and
therefore it suffices to show EXPTIME-hardness. We proceed by reduction from count-
down games. Let C be a countdown game with initial configuration (s, ¢), and let
P (L,1,{x}, inv, prob, L) be the 1C-PTA constructed in the proof of Theo-

(s,0) — _
rem 3] We define the 2C-PTA PZ7, ., = (L U {I*},1,{z,y}, inv’, prob’, L') in the
following way. The set of probabilistic edges prob’ is obtained by adding to prob
the following: for each location I € L, we extend the set of outgoing probabilistic
edges of [with (I,y = ¢,p""), where p'" (0),1*) = 1; to make prob’ total, we also add
(I*, true,p'’). For each | € L, let inv'(l) = inw(l), and let inv’(I*) = true. Fi-
nally, we let £'(I*) = a, and L(I) = () for all | € L. Then P?:CES o = P<i(Fa)if
and only if Péc(s 0 E —P.1(F=.a). The EXPTIME-hardness of the latter problem has
been shown in the proof of Theorem 3] and hence checking qualitative probabilistic
reachability properties such as =[P« (Fa) on 2C-PTA is EXPTIME-hard. 0

Corollary 2. The PcTL, PTcTL’/![<, >], PTcTLY?, PTCTL[<, >] and PTCTL model-
checking problems for 2C-PTA are EXPTIME-complete.

References

1. P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results
for timed automata via channel machines. In Proc. of the 32nd Int. Coll. on Aut., Lang. and
Progr. (ICALP’05), volume 3580 of LNCS, pages 1089-1101. Springer, 2005.

2. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for probabilistic real-time systems.
In Proc. of the 18th Int. Coll. on Aut., Lang. and Progr. (ICALP’91), volume 510 of LNCS,
pages 115-136. Springer, 1991.

3. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Inf. and Comp.,
104(1):2-34, 1993.

4. R. Alur and D. L. Dill. A theory of timed automata. Theo. Comp. Sci., 126(2):183-235,
1994.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. on Soft. Enginee., 29(6):524-541, 2003.

6. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness. Distributed Computing, 11(3):125-155, 1998.

7. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic sys-
tems. In Proc. of the 15th Conf. on Found. of Software Technol. and Theor. Comp. Sci.
(FSTTCS’95), volume 1026 of LNCS, pages 499-513. Springer, 1995.

8. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.

9. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of the ACM, 42(4):857-907, 1995.

184

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Jurdziniski, F. Laroussinie, and J. Sproston

L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University,
Department of Computer Science, 1997.

L. de Alfaro. Temporal logics for the specification of performance and reliability. In Proc.
of the 14th An. Symp. on Theor. Aspects of Comp. Sci. (STACS’97), volume 1200 of LNCS,
pages 165-176. Springer, 1997.

H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512-535, 1994.

H. E. Jensen. Model checking probabilistic real time systems. In Proc. of the 7th Nordic
Work. on Progr. Theory, pages 247-261. Chalmers Institute of Technology, 1996.

M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of proba-
bilistic timed automata using digital clocks. Formal Meth. in Syst. Design, 29:33-78, 2006.
M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions. Theo. Comp. Sci., 286:101-150, 2002.

F. Laroussinie, N. Markey, and G. Oreiby. Model checking timed ATL for durational con-
current game structures. In Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems (FORMATS’06), volume 4202 of LNCS, pages 245-259. Springer, 2006.

F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or
two clocks. In Proc. of the 15th Int. Conf. on Concurrency Theory (CONCUR’04), volume
3170 of LNCS, pages 387—401. Springer, 2004.

F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient timed model checking for discrete-
time systems. Theo. Comp. Sci., 353(1-3):249-271, 2005.

F. Laroussinie and J. Sproston. Model checking durational probabilistic systems. In Proc.
of the 8th Int. Conf. on Foundations of Software Science and Computation Structures (FoS-
SaCS’05), volume 3441 of LNCS, pages 140-154. Springer, 2005.

F. Laroussinie and J. Sproston. State explosion in almost-sure probabilistic reachability. To
appear in /PL, 2007.

S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. of the 8th Int. Conf. on
Foundations of Software Science and Computation Structures (FoSSaCS’05), volume 3441
of LNCS, pages 299-314. Springer, 2005.

C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision processes. Mathe-
matics of Operations Research, 12(3):441-450, 1987.

M. Stoelinga. Alea Jacta est: Verification of probabilistic, real-time and parametric systems.
PhD thesis, Institute for Computing and Information Sciences, University of Nijmegen, 2002.
S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Biichi automata emptiness effi-
ciently. Formal Meth. in Syst. Design, 26(3):267-292, 2005.

M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
of the 16th An. Symp. on Foundations of Computer Science (FOCS’85), pages 327-338. IEEE
Computer Society Press, 1985.

Adaptor Synthesis for Real-Time Components*

Massimo Tivoli', Pascal Fradet?, Alain Girault?, and Gregor Goessler?

! University of L’Aquila**
Dip. Informatica, via Vetoio 1, 67100 I’Aquila, Italy
tivoli@di.univaq.it
2 INRIA Rhéne-Alpes - POP ART project
655 avenue de I’Europe, 38330 Montbonnot, France
{Pascal .Fradet,Alain.Girault,Gregor. Goessler}@inrialpes fr

Abstract. Building a real-time system from reusable or COTS compo-
nents introduces several problems, mainly related to compatibility, com-
munication, and QoS issues. We propose an approach to automatically
derive adaptors in order to solve black-box integration anomalies, when
possible. We consider black-box components equipped with an expres-
sive interface that specifies the interaction behavior with the expected
environment, the component clock, as well as latency, duration, and con-
trollability of the component’s actions. The principle of adaptor synthesis
is to coordinate the interaction behavior of the components in order to
avoid possible mismatches, such as deadlocks. Each adaptor models the
correct assembly code for a set of components. Our approach is based on
labeled transition systems and Petri nets, and is implemented in a tool
called SynthesisRT. We illustrate it through a case study concerning a
remote medical care system.

1 Introduction

Due to their increasing complexity, control systems are nowadays often designed
in a modular approach by means of libraries of building blocks. This has lead
to a need of a component-based approach for building real-time systems out
of a set of already implemented components. Building a real-time system from
reusable or Commercial-Off-The-Shelf (COTS) components introduces several
problems, mainly related to compatibility, communication, and quality of service
(QoS) issues [2ITOTTIT2ITR]. Indeed, incompatibilities between the components
may arise and make their composition impossible.

In this paper, we show how to deal with these problems within a lightweight
component model where components follow a data-flow interaction model. Each
component declares input and output ports which are the points of interaction
with other components and/or the execution environment. Input (resp., output)
ports of a component are connected to output (resp., input) ports of a different

* This work has been partially funded by the ALIDECS project and the ARTIST II
European network of excellence.

** This work has been done while the first author was a postdoctoral fellow in the
Popr ART project team at INRIA Rhone-Alpes.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 185-{200,|2007.
© Springer-Verlag Berlin Heidelberg 2007

186 M. Tivoli et al.

component through synchronous links. In our framework, a component interface
includes a formal description of the interaction protocol of the component with
its expected environment in terms of sequences of writing and reading actions to
and from ports. The interface language is expressive enough to specify QoS con-
straints such as writing and reading latency, duration, and controllability, as well
as the component’s clock (i.e., its activation frequency). In order to deal with
incompatible components (e.g., clock inconsistency, read /write latency/duration
inconsistency, mismatching interaction protocols, etc.) we synthesize component
adaptors interposed between two or more interacting components. An adaptor
is a component that mediates the interaction between the components it super-
vises, in order to harmonize their communication. Each adaptor is automatically
derived by taking into account the interface specification of the components it
supervises. The adaptor synthesis allows the developer to automatically and in-
crementally build correct-by-construction systems from third-party components,
hence reducing time-to-market and improving reusability. The space complexity
of the synthesis algorithm is exponential in the number of states of the automa-
ton modeling the interaction protocol of each component. Thus, incrementality
is crucial to manage the complexity of real systems.

We have formalized the adaptor synthesis algorithm by using Petri nets [16]
theory, and we address its correctness in a companion paper [19]. Moreover, in
order to realize the whole approach, we have implemented a tool, called Synthesis
Real Time (SynthesisRT) [19], which we have used on a case study concerning
a remote medical care system (RMCS).

The remainder of the paper is organized as follows. Section [introduces the
notions of latency, duration, controllability, and local/global time/clock. Sec-
tion [3 provides an informal overview of our method. Section [l presents our com-
ponent specification formalism and its semantics in terms of Labeled Transition
Systems (LTSs). Section Bl formalizes the technical core of adaptor synthesis. Sec-
tion [6] describes our method at work on the RMCS case study. Finally, Section [7]
summarizes our work and presents related work and future extensions.

2 Background

In this section, we introduce the background notions used by our framework.

2.1 Context

We want to build component-based real-time systems by assembling third-party
black-box components. Black-box means that the component source code is not
available to the system designer. Each component is equipped with a rich inter-
face that describes its behavior as well as real-time properties. According to the
“design by contract” approach [I§], such an interface specification is given by
the component developer, who is aware of the information needed. An interface
includes:

Adaptor Synthesis for Real-Time Components 187

— A behavioral interface specification. This specification is given in terms of a
Labeled Transition System (LTS) that models the sequences of actions that
the component performs when it interacts with its environment. As it is
explained below, this LTS contains also timing information.

— A periodic clock that, for reuse purposes, is instantiated at assembly-time.
It specifies a sequence of instants by an infinite stream of boolean values: 1
denotes an instant where the component is enabled (it can perform an action
or let the time elapse) and 0 denotes an instant where then component is dis-
abled. A periodic clock can be finitely represented by its periodic sub-stream
(e.g., the clock (10)* represents the infinite stream 10101010101010...). The
global time is defined by the clock (1)“ that is called the base clock. The clock
of each component defines a time that is local to the component. It char-
acterizes the component speed and can be seen as a sub-clock of the base
clock. For hierarchies of components, the local clock of each component is a
sub-clock of the clock of its super-component. We refer the reader to [5] for
a comprehensive presentation of the periodic clock concept.

— A latency (a natural number) for each action. It specifies the number of global
time units that can pass before the action is performed. In other words, the
component may choose to synchronize with its environment to perform the
corresponding action any time before the latency is elapsed.

— A duration (an interval of natural numbers) for each action. It specifies the
local time units needed for the action execution. For instance, a duration
[1,2] indicates that the action may require one or two instants where the
component is enabled to complete. Contrary to the latency, the precise du-
ration cannot be chosen. The component must synchronize correctly with its
environment for every possible execution time specified by its duration.

— A controllability tag for each action. An uncontrollable action (i.e., tagged
with u) cannot be disabled. For example, inputs coming from a sensor are
often considered as uncontrollable since they must be accepted and treated
by the component. In contrast, controllable actions (without a tag) can be
safely disabled (e.g., by a supervisor or an adaptor), for instance to prevent
a deadlock.

2.2 Architectural Model

In this section, we provide an overview of our architectural model using a small
example. Figure[llshows the architectural specification of a black-box component
C1, with a clock port wy, which interacts with its environment through the input
port a and the output port b.

Fig. 1. Architectural schema of component C1

188 M. Tivoli et al.

In general, a component can have several input and output ports. Components
are connected to each other through their ports and interact synchronously. An
input port of a component can be connected to an output port of a different
component. Input (resp., output) ports support a reading (resp., writing) oper-
ation. Synchronous communication implies that reading and writing operations
among connected ports are blocking actions. In other words, connected compo-
nents are forced to synchronize on complementary read/write operations. E.g.,
let the input port p; and the output port ps be connected: a reading from p; has
to synchronize with a writing to po. This style of communication is not a limita-
tion because it is well known that, with the introduction of a buffer component,
we can always simulate an asynchronous system by a synchronous one [13].

The clock port of a component can be seen as a special input port whose cur-
rent value (either 1 or 0) depends on the periodic clock that has been assigned to
the component and on the current instant of the global time. It is not connected
to other ports since it serves only to assign a periodic clock to the component
at assembly-time.

3 Overview

In this section, we informally describe the main steps of our method as illustrated
in Figure @l Although we took inspiration from [3], our synthesis algorithm is
very different from theirs as it is discussed in Section [

We take as input the architectural specification of the network of components
to be composed and the component interface specifications. The behavioral mod-
els of the components are generated in form of LTSs that make the elapsing of

y(19)® y(10)®

| environment PNs|
H G G wepz - |

network of components component| (mismatch
et 1| LTSS with detected) Step 3
icomponent interfaces (LTSs)| explicit time
Unification
maximal controlled coverability graph Pr‘
(i.e., model of Ad) step 4
@ step 5 extended
§Z(10)“’ §Z(11)“’ §Z(10)“’ coverability
b
S Cy bl ad BBHC, 2 graph

correct-by-construction network of components

Fig. 2. Main steps of adaptor synthesis for real-time components

Adaptor Synthesis for Real-Time Components 189

time explicit (step 1). Connected ports with different names are renamed such
that complementary actions have the same label in the component LTSs (see
actions a and d in Figure (). Possible mismatches/deadlocks are checked by
looking for possible sink states into the parallel composition of the LTSs. The
adaptor synthesis process starts only if such deadlocks are detected.

The synthesis first proceeds by constructing a Petri net (PN) representation
of the environment expected from a component in order to avoid deadlocks
(step 2). It consists in complementing the actions in the component LTSs that are
performed on connected ports, considering the actions performed on unconnected
ports as internal actions. A buffer storing read and written values is modeled as
a place in the environment PN for each IO action. Each such PN represents a
partial view of the adaptor to be built. It is partial since it reflects the expectation
of a single component. In particular, a write (resp. read) action gives rise to a
place (buffer) without outgoing (resp. incoming) arcs.

The partial views of the adaptor are composed together by building causal de-
pendencies between the reading/writing actions and by unifying time-elapsing
transitions (step 3). Furthermore, the places representing the same buffer are
merged in one single place. This Unification PN desynchronizes emission from
reception using buffers. However, the unification PN may include behaviors that
deadlock and/or require unbounded buffers. In order to obtain the most permis-
sive and correct adaptor, we generate an extended version of the graph usually
known in PNs theory as the coverability graph [] (step 4).

Our method automatically restricts the behavior of the adaptor modeled by
the extended coverability graph in order to keep only the behaviors that are
deadlock-free and that use finite buffers (i.e., bounded interactions). This is
done by automatically constructing, if possible, an “instrumented” version of our
extended coverability graph, called the Controlled Coverability Graph (CCG).
The CCG is obtained by pruning from the extended coverability graph both the
sinking paths and the unbounded paths, by controller synthesis [I7] (step 5).
This process also performs a backwards propagation in order to correctly take
into account the case of sinking and unbounded paths originating from the firing
of uncontrollable transitions.

If it exists, the maximal CCG generated is the LTS modeling the behavior
of the correct (i.e., deadlock-free and bounded) adaptor. This adaptor models
the correct-by-construction assembly code for the components in the specified
network. If it does not exist, a correct adaptor assembling the components given
as input to our method cannot be derived, and hence our method does not
provide any assembly code for those components.

4 The Interface Specification and Its Translation

In this section, we present the interface specification language by continuing the
small example introduced before (the component C; described in Section 22)).
We have defined a higher-level language, called DLiPA [19], based on process

190 M. Tivoli et al.

W a1
‘\./‘
by

<s8,0>

(nCy (B)<C4,(10)*>

Fig. 3. (A) Behavioral interface of C1 and (B) its semantic model with respect to (10)*

algebra. In this paper, we start from an LTS, a form that DLiPA processes can
be easily translated into.

Our source LTSs are labeled with actions of the form ml{u} 3] Where 2 denotes
the action (read or write), I its allowed latency, [i,j] its duration, and w, if
present, the uncontrollability of the action.

Figure Bl (A) gives the interface specification of the component C; as an LTS.
From its initial state (denoted by an incoming arrow without source state), Cy
performs an action a (i.e., it reads from port a) followed by an action b (i.e., it
writes to port b) that returns to the initial state. All C; actions are controllable
(no u tag). The action a has latency 1, i.e., its execution can be delayed by
one global time unit at most. Moreover, a has duration [1, 2] meaning that its
execution can take either one or two local time units. Similarly, the execution of
b can be delayed by two global time units at most and takes no time.

FigureBl(B) presents the semantic model of C; that has been derived by tak-
ing into account the interface specification of Figure[Bl(A) and a periodic clock,
here (10)“, which has been assigned to C;. This semantics is noted (Cy, (10)“).
It is an LTS modeling the interaction behavior of C; with its expected envi-
ronment and making time elapsing explicit. The clock (10)* has been assigned
by the designer of the system to be assembled and it represents the required
component activation frequency. The LTS of (C1, (10)¢) is produced by compil-
ing latency and duration information into abstract actions e representing time
elapsing. Each state of the LTS is named by a pair made of a label (e.g., s0) and
a global time instant (e.g., 0). These instants refer to the finite representation
of the assigned periodic clock, i.e., they are the instants 0,...,] — 1 where [is
the length of the clock’s period. In our example, where the clock is (10)“, the
instant 0 represents instants where C is enabled (i.e., it can perform some ac-
tion or let the time elapse) whereas the instant 1 represents instants where C
is disabled (i.e., it can only let the time elapse).

A transition labeled by a concrete action (e.g., a) is instantaneous: it repre-
sents the starting point for the execution of the action. For example, the tran-
sition (s0,0) —% (s1,0) in Figure Bl(B) means that C starts to read from port
a. A transition labeled by an abstract action € or €% lets the time elapse: it

represents a tick of the global clock (e.g., (s1,0) N (s3,1) in Figure Bl(B)).
Latency is translated using the controllable action . For instance an action
x with latency 1 is translated into two sequences of transitions: one sequence

Adaptor Synthesis for Real-Time Components 191

performing = immediately and another sequence performing x after an e-
transition. If one branch leads to a deadlock, the environment (i.e., the adaptor
to be synthesized) may choose the other one by synchronizing only with it.

Duration is translated using the uncontrollable action €“. For instance, as-
suming the clock (1)¥, an action z with duration [1,2] is translated into the
transition x followed by the branching between one or two £“-transitions. The
uncontrollability enforces the composition with the environment to be compati-
ble with both time-elapsing possibilities. Note that, since duration refers to local
time and the semantics refers to the global time, the previous example with a
clock (10)“ would be translated into the transition x followed by the branching
between two or four e¥-transitions depending on the clock instant (assuming the
action z is enabled initially).

In the LTS of FigureBl(B) (i.e., (Cy, (10)*)), a duration unit is represented by
two e“-transitions. Note also that the local clock influences the actual latency.
For instance, according to clock (10)¢, Cy either executes b immediately (from
the time it is enabled) or waits exactly two global time units to execute it: a one
time unit wait leads to a state where the component is disabled and b cannot be
performed. Analogously, in order to represent the latency of a, an e-transition
should be produced from the initial state. However, this transition is pruned
since it is controllable and leads to a sink state (only a read from a is permitted
but it is disabled).

To define the semantics of a system (i.e., a network of components), we put in
parallel the semantic models of the components by forcing the synchronization
on complementary concrete actions and on abstract actions. Components syn-
chronize pairwise on complementary concrete actions by producing, for each syn-
chronizing pair b/b, a 7-transition at the level of the composed system, where 7
denotes an internal action. Components synchronize, altogether, on time-elapsing
transitions by producing a time-elapsing transition at the level of the system.
Whenever two or more components have a mismatching interaction due to some
behavioral inconsistency, a deadlock occurs in the composed system (i.e., a sink
state is produced in the LTS of the system). This is precisely what we avoid
thanks to our adaptor synthesis method, presented in the next section. We refer
to [19] for further details.

5 Adaptor Synthesis

In this section, we illustrate our method using another small example and for-
malize part of it. For space reasons, we focus only on the formalization of the
Unification PN (see Definition [Il) and we omit other formal details that will be
illustrated through the explanatory example.

5.1 Unification PN Generation

Let us suppose that the designer wants to build an assembly S formed by two
components C; and Cy whose semantic models are shown in Figure [

192 M. Tivoli et al.

<s4,0> a
c

3 <s1,0> <s2,1> <s3,0> B <v1,0> <v2,1> <v3,0> <v4,0> <v5,1> v6,0>
(B) u u C u
<s0,0> <v0,0> e € £ €

b a

Fig. 4. After step 1: (A) (C1,(11)*); (B) (C2, (10)“)

Note that the periodic clocks of C; and Cs have the same length. This is
required in order to perform the generation of the Unification PN. This require-
ment is not a limitation since, although the designer can specify clocks with
different length, they can be always rewritten in such a way that they have
the same length by taking the least common multiple of the different lengths. In
Figures[l (A) and Bl (B) we show respectively the PNs modeling the environment
expected from (C1, (11)¢) and (Cs, (10)“) in order not to block.

Fig. 5. After step 2: Component PNs - (A) PNy; (B) PN,

For technical reasons, the actions have been relabeled. Since, now, all the
latencies and durations have been made explicit through e-transitions, the in-
dexing that has been used for the action labels must not be confused with the
one used above to specify the latency. We recall that each environment PN is a
partial view of the adaptor to be built since it reflects the expectation of only
one component. In particular, for each state in the component LTS, there is
a place in the environment PN. The initial marking puts a token in the place
corresponding to the initial state. For each transition labeled with a concrete
action in the component LTS, there is a transition labeled with the complemen-
tary action in the environment PN. The transition label is such that it contains
the information concerning which component has performed the corresponding
action (through a suitable indexing: e.g., subscript 1 for C; and 2 for Cs).

Adaptor Synthesis for Real-Time Components 193

For each component writing action to an output port x, a place p, is produced
and an arc from the corresponding transition to p, is added. It corresponds to
the fact that, in order to synchronize with a component, the adaptor reads and
stores values into an internal buffer. A stored value will be written as output as
soon as the adaptor synchronizes with a component that expects to read this
value. Component reading actions are handled in a complementary way. In this
way, the adaptor desynchronizes the received events from their emission, hence
solving mismatches arising from the fact that different components perform com-
plementary actions at different instants.

For a time-elapsing transition in the component LTS, the corresponding tran-
sitions, places, and arcs are generated in the environment PN as it is shown in
Figure Bl That is, a correct environment for a component has to let the time
elapse whenever the component lets the time elapse as well.

Actions that do not force the component to synchronize with the environment
can be freely performed; the adaptor must not preempt them and produces an
internal action whenever they occur (there is no such action in our example).
We refer the reader to [19] for a formal definition of environment PN.

After the partial views of the adaptor have been built, they are composed
in order to obtain the Unification PN. In Figure [6l we show the Unification
PN (i.e., PNj2) that has been obtained after the unification of PN; and PNo.
The Unification PN PN » is automatically derived from the union of PN; and
PNs plus a unification operation of their time-elapsing transitions. Informally,
casual dependencies between the reading and writing of data are generated by
performing the union of the sets of places, arcs, and transitions, except for the
arcs and transitions concerning the elapsing of time. Time-elapsing transitions
are composed using the synchronous product. Figure [shows the obtained time-
elapsing transitions as dashed and grey arrows. For readability issues, we have

T:)1
|
ﬁ \ OPb
sO 7T s3
N
ay D N ! 1
L I— j) T OPc
W \ [52(v6,v0) ! 1 — 1 Pa
S i | Y S O
V0 N NI L - W7 S LN
®&—>» Q ****** >‘ ****** >Q ****** oo O—rp»(O @4 O
b V u V. su _ su v5 Eu V6
2 &1 2,2 ©2 13 2,4

Fig. 6. After step 3: PNi 2: the Unification PN for PN; and PN»

194 M. Tivoli et al.

drawn only the fireable transitions. For example, the first time-elapsing transition
of PN; composed with the first time-elapsing transition of PNs is fireable. Note
that the first time-elapsing transition of PN; composed with the third time-
elapsing transition of PN, is fireable as well (after PN; has performed one
loop). The step to derive the unification PN is formalized by Definition [T}

Definition 1 (Unification PN). Let PN; = (P, T;, F;, M{}) (where i =
1,...,n, P; is the set of places, T; is the set of transitions, F; is the set of arcs,
and M is the initial marking) be the PN modeling the environment expected from
the component C;. The Unification PN is the Petri Net UPN = (P, T, F, My),
where:

- P= Uz 1 P]

—T:UZ:TZ’ etk I Vi=1..n. e €TinTi. ey €T} U
{&ky,on | VI = 1,...,n . z’:‘zk € T;}, where T’ is T; without time-elapsing
transitions and the superscript x is either equal to ‘u’ or is empty;

- F=Uin FFuUA, ek,) ko P) | 20 € P (piefy) € Fi A
(04, 0) € Fi el o €TH U A(Dierin)s EnrrnsP) | D1 € P A
(p,€ik;) € Fi N (€ig;s0') € By Negy .k € T}, where F) is F; without arcs
to or from time-elapsing transitions, and the superscript x is either equal to
‘u’ or is empty;

— for each p € P if 3i.M¢(p) = 1 then My(p) = 1, otherwise My(p) = 0.

The following is an upper-bound estimation of the size of the Unification PN in
terms of its number of places and transitions:

IT| = >0, T/ + 1, |T¢| where T}¢ is the set of time-elapsing transitions
of PNZ

Note that the number of places and immediate (i.e., non time-elapsing) tran-
sitions of the Unification PN grows up linearly with respect to the number of
places and immediate transitions of the component PNs; whereas the number
of time-elapsing transitions is exponential with respect to the number of time-
elapsing transitions of the component PNs.

5.2 Controlled Coverability Graph Synthesis (CCG)

After the Unification PN has been generated, its maximal CCG is automatically
derived, if it exists. We first generate the extended coverability graph of the
Unification PN. Given a PN (P, T, F, My), we construct the marking graph in
the standard way. From My, we obtain as many markings as the number of the
enabled transitions. From each new marking, we can again reach more markings.
This process results in a graph representation of the markings. Nodes represent
markings generated from My (the initial node) and its successors, and each arc
represents a transition firing, which transforms one marking into another. How-
ever, the above representation will grow infinitely large if the PN is unbounded.
To keep it finite, we introduce a special symbol w to indicate a possibly infinite

Adaptor Synthesis for Real-Time Components 195

number of tokens in some place. w can be thought of as “infinity”. It has the
properties that for each integer n, w > n, w+n = w, and w > w. Given markings
M and M’ such that: (1) M’ is reachable from M, and (2) Vp, M'(p) > M(p)
(i.e., M is coverable by M’), then, for each place ¢ such that M’(¢q) > M(q) > 1,
we replace M'(q) by w in the extended coverability graph. This is the same crite-
rion as the termination criterion used by Cortadella et al. to identify irrelevant
markings [6]. They conjecture that this criterion is complete [6], meaning that
if a bounded and non-blocking execution exists, it will be represented in the
extended coverability graph.

dead and
unbounded
sub-graph

Fig.7. After step 4: (A) extended coverability graph of PNy 2; After step 5: (B)
its controlled version

By continuing our example, we partially show the extended coverability graph
of PN 2 in Figure[7l (A). The cloud-nodes are portions of the coverability graph
made only of paths whose nodes are either dead or contain unbounded markings.
Informally, a dead (resp., unbounded) marking is a node without successors
(resp., that represents a marking in which some place has stored a potentially
infinite number of tokens) or whose successors always lead to dead (resp., un-
bounded) markings. We refer to [I9] for a formal definition of dead and un-
bounded markings, and of CCG.

In Figure [1(B), we show the maximal CCG of PNj 3. The maximal CCG
is the most permissive one among all possible CCGs. Informally, it is obtained
from Figure[@ (A) by pruning the transitions that lead inevitably to cloud-nodes
and that are controllable. The pruning of controllable transitions, as well as the
“most permissive” notion, is borrowed from Discrete Controller Synthesis [17].

6 Case Study: A Remote Medical Care System

We now apply our approach to a case study, borrowed with minor modifications
from [4): a Remote Medical Care System (RMCS). The RMCS provides monitoring

196 M. Tivoli et al.

and assistance to disabled people. A typical service is to send relevant information
to a local phone-center so that medical or technical assistance can be timely noti-
fied of critical circumstances. The RMCS can be built from eight COTS compo-
nents (Alarm, Line, Control, RAlarm, etc.) assembled into three composite com-
ponents: User, Router, and Server (see Figure [§)). Using our adaptor synthesis
method and its associated tool (SynthesisRT), it has been possible to incremen-
tally and automatically assemble a correct by construction RMCS.

Foow. PR -

ackSR ack§

$(10®

nafunc nofune JSCONTROL

USER ROUTER SERVER

Fig. 8. The software architecture of the RMCS

When a patient needs help (i.e., the uncontrollable signal alarm is emitted),
User sends either an alarm (aUR) or a check message (¢) to Router. After
sending an alarm, User waits for an acknowledgment (ackRU) and indicates
the conclusion of the alarm dispatching to the patient (ack). Router waits for
check or alarm messages from User (¢ or aUR). It forwards alarm messages to
Server (aRS) and checks the state of User through the check message (¢). Server
dispatches the alarm requests (aR.S).

Fig. 9. Behavioral specification of (A) Line, (B) Control, and (C) Alarm

Router and Server are connected through a dedicated line (modeled by the
component SLine) that is always available. Conversely, User and Router are
connected through a usual phone line (modeled by the component Line) that
can be busy.

For space reasons, we only show the part of the case study that concerns
the assembly of the correct-by-construction version of User. We refer to [19] for
a complete description of both the case study and our SynthesisRT tool. User
models the logic of the control device provided to patients in order to dispatch

Adaptor Synthesis for Real-Time Components 197

alarms. It is an assembly of the three components Control, Alarm, and Line.
Figure [@ provides the interface specifications of these components. From these
behavioral specifications, SynthesisRT automatically derives the corresponding
LTSs. Then, the CADP toolbox [9] is used to derive the LTS representing Use
CADP allows us to detect possible deadlocks and to exhibit deadlocking traces.
For instance, in User, an alarm request can deadlock whenever Alarm receives
an alarm request from the patient and Control gets the Line to send a check
message to Router. Figure [I0 represents a deadlocking trace where, after an
alarm request, Control and Line synchronize (producing a 7) and let time elapse
(i.e., perform a and c) whereas Alarm is still waiting on action a that should be
performed immediately (no latency).

alarmV g 1 T
Fig.10. A deadlocking trace of User

An adaptor is therefore required to avoid deadlocks in User. SynthesisRT
automatically derives the environment PNs of Line, Control, and Alarm, as well
as their Unification PN. The Unification PN is encoded in a file that can be
fed to the TINA tool [I]. TINA is used to automatically derive the extended
coverability graph of the generated Unification PN. The coverability graph is
generated in 0.061 seconds on a Macbook Pro; it is unbounded and has 348 states,
763 transitions, 197 unbounded markings/states and no dead marking/state.
This means that the message reordering has been sufficient to solve the detected
deadlock, but it can still lead to some buffer overflows.

At this point, SynthesisRT is used again to automatically derive, from the
uncontrolled coverability graph, its corresponding maximal CCG that prevents
the reaching of the unbounded states. The maximal CCG is the LTS of the
synthesized adaptor (Adyser-) that allows one to correctly assemble User. In our
example, the adaptor is generated in 0.127 seconds but it is too large to be
presented here; it has 116 states and 242 transitions. The deadlock is solved by
Adyser using message buffering and reordering. More precisely, when Line and
Control perform a and ¢, Adyse, synchronizes with Alarm on the line request
a. It stores the received request in a buffer in order to forward it when the line
is released by Control. Then, the execution of Alarm can proceed and reach a
point where it can let the time elapse, as required by Control and Line.

So, by putting Adyser in parallel with Line, Control, and Alarm, we ob-
tain the correct-by-construction version of the composite component User. We
have also used SynthesisRT to derive three other adaptors: Ad,outer (inter-
posed between RAlarm, SLine, and RControl), Ad,s (interposed between the
adapted router and Server) and Ad, s (interposed between the adapted com-
posite router /server component and the adapted user component). Through the

! Referring to Figure[] steps 1, 3, and 5 are performed with SynthesisRT, step 2 with
CADP, and step 4 with TINA.

198 M. Tivoli et al.

synthesis of these four adaptors, we have incrementally and automatically built
a correct-by-construction RMCS.

7 Conclusion

In this paper, we have described an adaptor-based approach to assemble cor-
rect by construction real-time components that take into account interaction
protocols, timing information, and QoS constraints. Our approach focuses on
detection, correction, and prevention of deadlocks and unbounded buffers due
to mismatching protocols. The main idea is to build a model of the environment
of the component and to extract a controlled version (an adaptor) preventing
deadlocks and unbounded buffers. In the general case, the space complexity of
the synthesis algorithm is exponential in the number of states of the component
LTSs. We have validated the approach by means of a case study.

Our work is related to several techniques in different research areas. In control
theory, a related technique is discrete controller synthesis [17]. The objective is to
restrict the system behavior so that it satisfies a specification. This is achieved by
automatically synthesizing a suitable controller w.r.t. the specification. Beyond
restricting the system behavior, our approach also extends it to resolve possible
mismatches. For instance, while the approach in [I7] performs only deadlock
prevention, our approach performs also deadlock correction.

Another related work in synchronous programming is the synchronizing of
different clocks. In [5], each input and output port is associated with a periodic
clock. Adaptation is performed at the level of each connection between ports
using finite buffers. It is sufficient to look at the clocks of two connected ports
and to introduce a delay by interposing a node buffer between the two ports.
In our context, adaptation must be performed at the component level by taking
into account several dimensions of the specification: the component clock, the
interaction protocol, the latency, duration, and controllability of each action.
For this reason, introducing delays is not sufficient and, e.g., the reordering or
inhibition of actions may be necessary.

Related work in interface automata theory [7] also uses LTSs to model the
input/output behavior of components. When composing two LTSs, they derive a
constraint on their environment such that deadlocks are avoided, but they do not
produce an adaptor to solve the incompatibilities between the two components.

Related work in component adaptation [3] and component interface com-
patibility [15] has shown how to automatically generate the behavioral model
of an adaptor from: (i) a partial specification of the interaction behavior of
the components and (ii) an abstract specification of the adaptor. In contrast
with our work, they do not deal with real-time attributes. Although we took
inspiration from [3] with respect to the PN encoding into the TINA tool and the
use of CADP, our synthesis algorithm is very different from theirs since they do
not have to take into account time-elapsing actions. Moreover, both techniques
in [3] and [I5] consider all component actions to be controllable, and neither

Adaptor Synthesis for Real-Time Components 199

considers the problem of synthesizing an adaptor model that ensures to always
have bounded buffers.

Our approach focuses only on the automatic generation of the behavioral
model of the correct adaptor. Future work shall consider the generation of the
adaptor’s actual code using, e.g., synchronous languages such as Signal, Lustre,
or Esterel. So far, the clocks are fixed before synthesizing the adaptor. Changing
a component clock means re-executing the synthesis algorithm. An interesting
extension would be to automatically derive clock-independent adaptors. A com-
ponent clock would become a function of the adaptor clock. When the adaptor
clock is instantiated, the component clocks will be instantiated as well to obtain
a correct-by-construction assembly. Another possible future work is to study
and formalize component architectures for which incremental adaptor synthesis
is equivalent to a centralized adaptor synthesis.

References

1. B. Berthomieu, P. Ribet, and F. Vernadat. Construction of abstract state spaces
for Petri nets and time Petri nets. International Journal of Production Research,
42(14), 2004. TINA web page: http://www.laas.fr/tina/|

2. B. Boehm and C. Abts. COTS integration: Plug and pray? IEEE Computer, 32(1),
1999.

3. C. Canal, P. Poizat, and G. Salaiin. Synchronizing behavioural mismatch in soft-
ware composition. In FMOODS, volume 4037 of LNCS, 2006.

4. M. Cioffi and F. Corradini. Specification and analysis of timed and functional
TRMCS behaviors. In Proc. of the 10th IWSSD, 2000.

5. A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet.
Synchronization of periodic clocks. In Proc. of the 5th EMSOFT, 2005.

6. J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Wanatabe. Quasi-
static scheduling of independant tasks for reactive systems. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, 24(10):1492-1514, Oct.
2005.

7. L. de Alfaro and T. Henzinger. Interface automata. In Annual Symposium on
Foundations of Software Engineering, FSE’01, pages 109-120. ACM, 2001.

8. A. Finkel. The minimal coverability graph for Petri nets. In Proc. of the 12th
APN, volume 674 of LNCS, 1993.

9. H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. EASST
Newsletter, 4, 2002. http://www.inrialpes.fr/vasy/cadpl

10. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6), 1995.

11. P. Inverardi, D. Yankelevich, and A. Wolf. Static checking of system behaviors
using derived component assumptions. ACM TOSEM, 9(3), 2000.

12. N. Kaveh and W. Emmerich. Object system. 8th FSE/ESEC, 2001.

13. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

14. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4), 1989.

15. R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni-Vincentelli. Convert-
ibility verification and converter synthesis: Two faces of the same coin. In ICCAD,
2002.

http://www.laas.fr/tina/
http://www.inrialpes.fr/vasy/cadp

200 M. Tivoli et al.

16. C. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, 1962.

17. P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 1(77), 1989.

18. C. Szyperski. = Component Software. Beyond Object Oriented Programming.
Addison Wesley, 1998.

19. M. Tivoli, P. Fradet, A. Girault, and G. Gossler. Adaptor synthesis for real-time
components. Research report, INRIA, 2007, to appear.

Deciding an Interval Logic
with Accumulated Durations*

Martin Franzle! and Michael R. Hansen?**

! Dpt. Informatik, C. v. Ossietzky Universitit Oldenburg, Germany
fraenzle@informatik.uni-oldenburg.de
2 Informatics and Math. Modelling, Technical University of Denmark
mrh@imm.dtu.dk

Abstract. A decidability result and a model-checking procedure for a
rich subset of Duration Calculus (DC) [19] is obtained through reductions
to first-order logic over the real-closed field and to Multi-Priced Timed
Automata (MPTA) [13]. In contrast to other reductions of fragments
of DC to reachability problems in timed automata, the reductions do
also cover constraints on positive linear combinations of accumulated
durations. By being able to handle accumulated durations under chop as
well as in arbitrary positive Boolean contexts, the procedures extend the
results of Zhou et al. [22] on decidability of linear duration invariants to
a much wider fragment of DC.

Keywords: Real-time systems, metric-time temporal logic, decidability,
model-checking, multi-priced timed automata.

1 Introduction

The Duration Calculi (DC) are a family of metric-time temporal logics facilitat-
ing reasoning about embedded real-time systems at a high level of abstraction
from operational detail [2TIT9]. Its major ingredients permitting such abstract-
ness are, on one hand, that it is an interval-based [I0] rather than a situation-
based temporal logic [14] and, on the other hand, the notion of an accumulated
duration of a predicate being true over some observation interval. While the
former permits a less state-based style of specification, the latter supports ab-
straction from the fine-granular distribution of interesting or critical situations
along the time line. An example is the accumulated runtime of some task in a
multitasking environment, where the time instants where the task actually is
run are of minor importance, provided the accumulated duration of running it
before its deadline is sufficient for its completion.

* This work has been supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org) and by Velux Fonden,
Sgborg, Denmark, through the Velux Visiting Professors Programme.

** This work has been partially funded by The Danish Council for Strategic Research
under project MoDES.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 201{215,]2007.
© Springer-Verlag Berlin Heidelberg 2007

202 M. Franzle and M.R. Hansen

While the abstractness supported by DC is desirable for system specification
and analysis, it proved to be a burden for automatic verification support. Both
the satisfiability problem and the model-checking problem wrt. timed automata
of most non-trivial fragments of DC are known to be undecidable [20/19]. In the
dense-time setting with finitely variable models as interpretation, decidability
has in general only been obtained by either dropping metric time altogether [20]
or by dropping accumulated durations and, furthermore, seriously restricting
the use of negation or chop (DC’s only modality) [BII2/86]. The only notable
exception is [22], where a conjunction of linear duration invariants is automati-
cally checked on the possible runs of a timed transition table, where transition
occurrences are constrained by upper and lower bounds on the residence time
in the source state. Linear duration invariants are, however, an extremely small
fragment of DC: They are formulae ¢y < ¢ = Z;L:1 ¢ fB < ¢p41 expressing that
the weighted sum ", ¢; [P; of the accumulated durations [P; of some mutu-
ally exclusive state properties P; is always less than c,11, provided the length
of the observation interval exceeds c¢g. Furthermore, the automaton model dealt
with is very restrictive: by only featuring timing bounds on the residence time
in the source state of a transition, it is considerably less expressive than timed
transition systems with clocks [I/4]. In particular, it is not closed under, e.g.,
parallel composition.

Within this paper, we do complement the aforementioned decidability results
by procedures that are able to

1. check satisfiability of formulae featuring multiple different accumulated du-
rations within subformulae which, furthermore, may occur under arbitrarily
nested chop and within complex Boolean contexts, provided the chop modal-
ities occur in positive context, and to

2. check whether every run of a timed automaton A satisfies —¢, where ¢ is a
formula as described under point (). This model-checking problem is usually
written A = —¢, and in this special form ¢ is a specification of an undesired
situation, and A = —¢ asserts that no run of A exist which exhibits the
undesired situation. This idea is, for example, pursued in [I5II], where ¢
can have the restricted form of a DC implementable [16], thus abandoning
accumulated durations and replacing chop by more restricted, operationally
inspired operators. We extend their work by allowing formulae featuring
accumulated durations and arbitrary positive chop.

For the decidability results concerning satisfiability of formulae, our construc-
tion builds on a small model property permitting the reduction of model con-
struction for DC to satisfiability of first-order logic over the reals with addition
FOL(R,+, <). The model-checking results are obtained through a reduction to
Multi-Priced Timed Automata (MPTA) [13], where weighted sums of accumu-
lated durations are encoded by prices. The syntactic structure of the formula to
be checked reflects in the structure of the MPTA generated, where conjunction
and disjunction map to the corresponding operations on automata, while the
chop modality yields concatenation.

Deciding an Interval Logic with Accumulated Durations 203

Structure of the paper: In Sect. 2] we introduce Duration Calculus and the
relevant notions of satisfiability and satisfiability over length-bounded models.
Section 3] provides the decidability result concerning satisfiability, while Sect.
provides the corresponding result for the model-checking problem. In between,
Sect. @ reviews multi-priced timed automata, as defined by Rasmussen and
Larsen in [I3]. Section [finally, discusses how close these results are to the
decidability borderline.

2 Duration Calculus

Duration Calculus (abbreviated DC in the remainder) is a real-time logic that is
developed for reasoning about durational constraints on time-dependent
Boolean-valued states. Since its introduction in [2I], many variants of DC have
been defined [19]. In this paper we aim at a subset involving durational con-
straints, which can be supported by automated reasoning.

2.1 Syntax

The syntax of DC used in this paper is defined below. We shall define two
syntax categories: state expressions, ranged over by S, S, Se, ..., and formulae,
ranged over by ¢, ¢1,¥, 11, State expressions are Boolean combinations of
state variables, and they describe combined states of a system at a given point
in time. Formulae can be considered as truth-valued functions on time intervals,
i.e. for a given time interval, a formula is either true or false.

The abstract syntax for state expressions and formulae is defined by:

S:::0|1|P‘—\S‘Sl\/52
pu=Loak [[ST] Xt cifSixk| =gl oV |ond |~

where ¢ is a special symbol denoting the interval length, P ranges over state
variables, k,m,c; € N, and e {<, <, =,>,>}.

In the remainder, we will call any formula built according to the above syntax
a DC formula. The subset of DC formulae where the chop modality “~” do only
occur under a positive number of negations is denoted DCp0s. DC\ -, will name
the set of all negation-free (at formula level) DC formulae. Finally, DC,, contains
all DC, ., formulae which contain only upper bound constraints on durations,
i.e. where e {<,<}, and where exactly one duration constraint is a strict
inequality.

2.2 Semantics

An interpretation Z associates a function Pr : R>g — {0,1} with every state
variable P, where R>q models the dense time line such that interpretations yield
time-dependent, Boolean-valued valuations of state variables. We impose the
finite variability restriction that Pz has at most a finite number of discontinuity
points in any interval [a, b].

204 M. Franzle and M.R. Hansen

The semantics of a state expression S, given an interpretation Z, is a function:
Z[S] : R>o — {0,1}, which is defined inductively as follows:

Thol I R

) =
[)(t) = |
I[PI() = Pe(t) T[SV Sa](t) = { 0if Z[$1](¢) = Z[Sa1(t) = 0

1 otherwise.

We shall use the abbreviation S7 & T ST

Satisfaction of formulae ¢ is defined over pairs (Z, [a,b]) of an interpretation
7 and a time interval [a,b] with a,b € R>¢. Such a pair (Z, [a,b]) is called an
observation. The satisfaction relation Z, [a,b] = ¢ is defined recursively, where
T is an interpretation, [a,b] is an interval, and ¢ is a formula:

Z,la,b] Ll k if b—amxk

Z,la,b] E [5] iff a<bandf Sz(t)dt=b—a
I,[a,b]):zzlclfS >k iff leZI Sir(t)dt > k
Z,[a,b] E - it Z,[a,b] £ &

I7[a7b]):¢\/z/) i Z,[a,b] = 6 or 7, [a,b] F v
Z,[a,b]) = ¢ it Z,[a,b] E ¢ and Z,[a,b] E ¢
Z,la,b] = ¢ w if Z,[a,m] = ¢ and Z,[m,b] = 9,

for some m € [a, b)].

Whenever Z, [a,b] = ¢ holds we say that ¢ is true in [a,b] wrt. Z. A formula
¢ is said to be walid (written |= @) if Z, [a, b] = ¢ holds for all interpretations 7
and all intervals [a, b]. Furthermore, a formula ¢ is satisfiable if Z, [a,b] = ¢ for
some observation (Z, [a, b]). Given k € N, we say that ¢ is k-bounded satisfiable if
there is an interpretation Z with at most k discontinuity points@ and an interval
[a,b] such that Z, [a,b] = ¢. In this case, we say that observation (Z,[a,b]) is a
k-bounded model of ¢.

Since every occurrence of a state variable is within the scope of an integral, we
can form equivalence classes of interpretations, where no formula can distinguish
between interpretations belonging to the same class. This leads to the following
definition and lemma:

Definition 1. Two interpretations I,Z’" are called equivalent in [a,b], written
T =jap I', if Pr and Py disagree on at most a finite number of points in [a, b],
for every state variable P.

Lemma 1. For any formula ¢, interpretations Z,Z" and interval [a,b):

IfT = T', then T,[a,b] = ¢ iff T/, [a,b] |= .

! Formally speaking, Z is a vector of functions P;r and has no discontinuity
points itself. By the discontinuity points of Z we mean the set {t € R |
P is state variable, Pr has a discontinuity point in ¢} of all discontinuity points of
the individual Pz.

Deciding an Interval Logic with Accumulated Durations 205
3 Decidability of the Satisfiability Problem

It has been observed previously, e.g. by Guelev (personal communication, 1997)
and by Hoenicke [I1], that for fixed k € N, the k-bounded satisfiability problem
for Duration Calculus (as defined in Sect.) is decidable via a reduction to
first-order logic over the reals with addition FOL(R, +, <), whose decidability is
classical [18§].

Lemma 2. Let k € N and ¢ a DC formula.

It is decidable whether ¢ is k-bounded satisfiable.

If ¢ is k-bounded satisfiable then ¢ is satisfiable.

If ¢ is satisfiable then there exists | € N such that ¢ is l-bounded satisfiable.
There is no algorithm which, given a satisfiable formula ¢, computes the
bound I from item [3.

T Lo o~

Proof. A proof of (Il) can be found in [I11, p.24ff]. (@) and (B]) are obvious from the
definitions. (@) is a consequence of the general undecidability results of Duration
Calculus (e.g., [20/19]) and the decidability result stated in (). O

Item M of Lemma [2 shows that k-bounded satisfiability is much more limited
than satisfiability in general and that, consequently, the corresponding decid-
ability results are of limited value. For full DC, they do only provide a semi-
decision procedure for (unbounded) satisfiability, based on testing increasing k
in Lemma [2] () and exploiting the correspondences from Lemma 2] (2 and []).

We shall show below that formulae of DC,os have a small-model property
permitting effective computation of a bound on the length of minimal models of
satisfiable formulae. According to Lemma [2] (), this implies decidability of the
satisfiability problem. The main idea behind this result is that the truth value
of a formula ¢ € DC\qs for an observation (Z, [a, b]) is invariant to reshuffling of
certain segments of 7 in [a, b].

To explain this, let (Z1, [a1, b1]) and (Z2, [az, b2]) be observations. Then obser-
vation concatenation a : (1, [a1,b1]) ~ (Z2, [az, b)) denotes the (set of B obser-
vations (Z', [a,a + by — a1 + by — ag]) with Z’ for all state variables P satisfying
Vt € [O,bl — al).le (a1 + t) = P (a + t) and Vt € (O,bz — az].P1'2 (Clg + t) =
Pr(a 4+ by — a1 + t). We shall omit repeated a : in repeated concatenations
a: (a:l'l AIQ) ’\Ig.

Lemma 3. Let ¢ be a chop-free formula and (Z,[a,b]) =a: 01 ~ Oy ~ -+~
Oy be a concatenation of observations O;. Then

a: (01~ 027~ Op)[a, 0] Ediffa: (O = O ~ -~ 04, [a,b] F 6,
for any permutation iq,1s,...1x of 1,2,... k.

2 Note that interpretation outside the observation interval is irrelevant to the semantics
of DC such that the fact that concatenation actually yields a set is irrelevant in
practice.

206 M. Franzle and M.R. Hansen

Proof. The proof is by induction on the structure of ¢. The base case ¢ ~ k
is simple, since the truth value depends on the interval [a,b] only. The other
two base cases: [S] and Y..", ¢ [S; > k, are simple since their truth values
are defined in terms of integrals of state expressions, and such integrals are
invariant to the reshuffling. The inductive steps for the propositional connectives
are straightforward. O

This lemma provides a small-model property for any chop-free formula ¢.
Suppose that ¢ contains n state variables, and that (Z, [a,b]) is a model of ¢.
There are 2™ different truth assignments to n Boolean variables, and the above
lemma allows us to reshuffle the segments of 7 in [a, b] to arrive at a 2"-bounded
model of ¢.

Corollary 1. If a chop-free formula ¢ is satisfiable then it has a 2™-bounded
model, where n is the number of state variables occurring in ¢

To show the small model property for DCqs, we first introduce another operator
to DC: In a timed chop ¢ —c 1, where ¢ € R>q, the chop point is confined to
occur exactly at time c:

Z,ja,b)E ¢~ iff a<c<bandZ,la,clE¢andZcb] .

It is obvious that a DC formula ¢ € DCy,os is satisfiable iff there is some satisfiable
formula 1 which is syntactically equal to 1 except that all chops have been
replaced by timed chops. For such a 1, we can now show that 1, if satisfiable,
has a model of length linear in the number of (timed) chops in .

Lemma 4. If ¥ does not contain an untimed chop and is satisfiable then 1 is
2"(m + 1)-bounded satisfiable, where m is the number of (timed) chops in 1 and
n is the number of state variables occurring in 1.

Proof. sketch: Between chop points —which are now fixed to constant occurrence
times and thus cannot permute—, one can reshuffle the segments in Z arbitrarily,
thus ending up with at most 2" segments between each two chops according to
Corollary [Tl Since there are m chop points, there are m + 1 such segments. O

As chop is a relaxation of timed chop, all models of ¢ are also models of ¢.
Therefore, the above result generalizes to DC formulae with untimed chop:

Corollary 2. If a formula ¢ € DCs is satisfiable then it has a 2"(m + 1)-
bounded model, where m is the number of chops in ¢ and n is the number of
state variables occurring in ¢@.

Proof. As DCyqs contains the duals of all operators except chopE we can rewrite
¢ to negation-free form ¢ € DC\ . If ¢ is satisfiable then it has at least one
satisfiable counterpart v containing only timed chops. According to the previous
Lemma, v has a 2"(m + 1)-bounded model. As satisfaction of timed chop im-
plies satisfaction of chop, and due to monotonicity of all other operators in the
negation-free fragment DC, -, this model is also a model of ¢’ and thus ¢. O

3 For [S], we have the duality [S] = —(£ =0V =S > 0). All other dualities are the
classical ones from predicate logics.

Deciding an Interval Logic with Accumulated Durations 207

As a consequence, we obtain decidability of the satisfiability problem of DC:
Theorem 1. It is decidable whether a formula ¢ € DCp, is satisfiable.

Proof. According to Corollary 2] in order to check for satisfiability of ¢ it suffices
to check whether ¢ has a 2"(m + 1)-bounded model, where m is the number of
chops in ¢ and n is the number of state variables occurring in ¢. Lemma 2] ()
shows decidability of 2”(m + 1)-bounded satisfiability. O

As —after rewriting to negation-free form DC_— there are no negations in our
fragment of DC, the FOL(R, +, <) formula constructed turns out to be in the
existential fragment of FOL(R, +, <. Its size is linear in |¢| and in the bound
k = 2"(m + 1) of model construction. For a fixed number n of state variables,
it is thus worst-case quadratic in |@|. As deciding the existential fragment of
FOL(R, +, <) is NP-complete, this implies that satisfiability of DC formulae
with a fixed number of state variables is in NP. Without a bound on the number
of variables, it obviously is singly exponential.

4 Priced Timed Automata

In this section, we review the definition of Linearly Multi- Priced Timed Automata
(MPTA) together with the theorems that we shall use in order to establish our
decidability result for DC. The presentation of MPTA is based on [13]. MPTA
are an extension of timed automata [II4], where prices are associated with edges
and locations. The cost of taking an edge is the price of that edge, and the cost
of staying in a location is given by the product of the cost-rate for that location
and the time spent in the location.

Let C be a finite set of clocks. An atomic constraint is a formula of the form:
x> n, where x € C, <€ {<,=,>,<,>},and n € N. A clock constraint over C is
a conjunction of atomic constraints. Let B(C) denote the set of clock constraints
over C and let B(C)* denote the set of clock constraints over C involving only
upper bounds, i.e. < or <. Furthermore, let 2€ denote the power set of C.

A clock valuation v : C — R>q is a function assigning a non-negative real
number with each clock. The valuation v satisfies a clock constraint g € B(C),
if each conjunct of g is true in v. In this case we write v € g. Let RS, denote
the set of all clock valuations. a

Definition 2 (cf. [13]). A multi-priced timed automaton A over clocks C is a
tuple (L, 1o, E, I, P), where L is a finite set of locations, ly is the initial location,
E C L x B(C) x 2% x L is the set of edges, where an edge contains a source, a
guard, a set of clocks to be reset, and a target. I : L — B(C)* assigns invariants
to locations, and P : (LU E) — N™ assigns a vector of prices to both locations

and edges. In the case of (I, g,r,1') € E, we write | 2L,

In order to give semantics to linearly multi-priced timed automata, the notion of
a multi-priced transition system is introduced. A multi-priced transition system

* Also known as “LinSAT”, featuring powerful tool support, e.g. [Bl9].

208 M. Franzle and M.R. Hansen

is a structure T = (S, so, X, —), where S is a, possibly infinite, set of states,
so € S is the initial state, X is a finite set of labels, and — is a partial function
from Sx X'x.5 to R, defining the possible transitions and their associated costs.

The notation s —, s’ means that — (s, a, s’) is defined and equal to p. An

. . . ai az an
execution of T is a finite sequence & = s9 —p, 51 —p, 52 *** Sn—1 —=p, Sn,
and the associated cost of « is cost(a) = 1| p;.

For a given state s and a vector u = (u1,...,Un_1) € R;”JH let mincosty 4, (s)

denote the minimum cost wrt. the last component of the price vector of reaching
s while respecting the upper bound constraints to the other prices which are
given by w. This is defined as the infimum of the cost of all executions ending
in s and respecting price constraint u, i.e.

Vi € Ny, cost(a); < u;

i i tion of T ending i
mlHCOStT)u(S) — inf {COSt(a)m Q. an execution o ending 1n s, } .

Furthermore, for a set of states G C S, let mincosty ., (G) denote the minimal
cost of reaching some state in G while respecting the upper price bounds u.
The semantics of a linearly multi-priced timed automaton A = (L, lo, E, I, P)
is a multi-priced transition system Ta = (S, sg, X, —), where
- §=LxRE,,
— 80 = (lo, vo), where vy is the (clock) valuation assigning 0 to every clock,
— XY = EU {6}, where ¢ indicates a delay and e € E the edge taken, and
— the partial transition function — is defined as follows:
o (ILv) -5, (Lv+d) ifVeO<e<d:v+eeI(l),and p=d-P(l),
o (I,v) —=, (I',v) if (I,g,7,1') € E,v € g,v" = v[r — 0] and p = P(e),
where v + d means the clock valuation where the value of z is v(z) + d, for
z € C,d € R>¢, and v[r — 0] is the valuation which is as v except that
clocks in r are mapped to 0.

In case T4 performs a ¢ step (I,v) Lp (I,v + d), we say that the duration of
the step is d. All other steps, i.e. those labelled e € F, have duration 0.

The main results that we shall exploit concerning linearly multi-priced timed
automata is that the minimum cost of reaching some target location is com-
putable for any (set of) target location(s) and any upper bound on the remain-
ing prices: Given an MPTA A = (L,lp, E,I, P), a target G C L, and some
cost constraint u € R 1 we define the minimum cost mincost 4u(G) to be

mincostr, (G X Rgo) .

Theorem 2 ([13]). For any MPTA A = (L,ly,E,I,P), any set G C L, and
any cost constraint u € Rgo_ L the minimum cost mincost Au(G) is computable.

5 Encoding of DC,;, Formulae by MPTA

Within this section, we will provide an encoding of DC,, formulae ¢ by MPTA
representing their models. The encoding will be such that each model of ¢

Deciding an Interval Logic with Accumulated Durations 209

corresponds to a run of the corresponding MPTA with the associated costs repre-
senting and satisfying the duration constraints in ¢. In detail, we shall represent
each formula ¢ by a tuple (L, s, E, I, P, f, A) denoted Ay, where (L, s, E, I, P) is
a multi-priced timed automaton, f is a special final location to be reached, and A
is a function associating a DC state-expression S with every location. The con-
struction will be such that the automaton will not be allowed to spend positive
time in the final location, and the intuition is that the satisfying observations of
¢ are represented by the set of executions of Ay ending in f. Subformulae of the
form Z:Zl ¢ fSi > k will, however, receive a special treatment. The intuition
about the automaton for such a formula is that its executions ending in f can
generate all possible interpretations to the state variables and that the value
of the expression > ., ¢; [S; is the cost of the execution, and a bounding of
the cost or an analysis of the minimal cost of executions can be used to decide
satisfaction of Y .| ¢; [S; < k.

5.1 The Construction
In the construction we shall use the following conventions:

— the cost of an edge is always 0,

the cost-rate of a location is 0 unless otherwise stated,

the invariant of a location is true unless otherwise stated,

— the mark of a location [is the state expression 1, i.e. A(l) = 1, unless
otherwise stated.

In the following we assume that the formula ¢ under consideration contains
n distinct state variables Py, ..., P, and m subformulae Y .7 ¢; ; [Si; <5 kj,
where >, =< and ;=< for every j < m. We shall give a recursive construction
of an automaton which follows the structure of the formula. The base cases are

I k, ,[S-H and Zni]l szSz >]{}j.

K3

The case ¢ = > k. Let Ay = (L,s,E, I, P, f,A), where

- L:{Saf}v
— E={(s,z >k, {z}, f)}, and
S I(f)=z <0,

This automaton is depicted in Fig. [la).
The case ¢ = [S]. Let Ay = (L,s, E,I, P, f, A), where

- L= {Salhf}a

— E = {e1,eq,e3}, where e; = (s,true,{},11), e2 = (l1,y > 0,{y},s), and
€3 = (1171' > 07 {‘r}af)v

—I(s)=y<0and I(f) =2 <0, and

— A(ly) = S.

This automaton is depicted in Fig. dI(b).

210 M. Franzle and M.R. Hansen

a \ ;
S o
true/
.
x> k/ > gi%
z:=0 =

f
true/
z:=0 (1,0) (1,1)
b

. J

Fig. 1. MPTA encoding of atomic formulae: (a) £k, (b) [S], (¢) ¢/[Q+d[Q V R k.
State decorations above the dashed line denote invariants and cost assignments (both
omitted if trivial), while those below the dashed line denote the labeling function A.

The case ¢ = > i cij [Sij > kj. Let Ay = (L,s,E,I, P, f, A), where L =
{s, ftuU{0,1}™ and E,I, P and A are defined below. Each n-tuple in {0,1}" is
a bit-vector b = (by,...,b,) and the idea with this is that b; = 1 iff the value of
P; is 1 in that state.

The set of edges E = E1 U Es U FEj3 is defined as the union of three sets, where

— Ey ={(s,true,0,b) | b e {0,1}"},

— FEy = {(b,true,0,b') | b,b' € {0,1}" Ab# b}, and

— B3 = {(b,true, {z}, f) | be {0,1}"}.

For b € {0,1}", we define two sets: b" = {l e N |1 <[< nAb = 1} and
b-={leN|1<I<nAb =0} Let F(b) denote the state expression:

AP AR
leb— lebt

. . . . mj
For each state expression S;; occurring in the summation Y, ¢ ; [S; ;, we
define the cost rate as follows:

Cii if F(b) = S, ;
C b S,L N WA 3]0
(b)(Si5) {C(b)(si,j) =0 otherwise.

The invariants of locations are as follows: I(s) =z < 0,I(f) = « < 0, and for
all other locations the invariant is true.
The cost assignment P : L U E — N™ is defined as follows:

Py, =14 ifl=sorl=fork#jorleE
" S C(1)(Si,;) otherwise.

Deciding an Interval Logic with Accumulated Durations 211

The definition of the labelling function A is A(l) =1 iff l=sorl = f and F(I)
otherwise. An example of this automaton construction is shown in Fig. [Iic).
We now consider the recursive cases: ¢ V ¥, ¢ A ¥ and ¢ . In these cases,
we will assume that the automata Ay, = (L1, s1, B, I1, P1, f1,41) and Ay =
(Lo, s2, Ea, I, P, fa, A3), have disjoint sets of locations and clocks, respectively.

The case ¢V). Assume that s and f are two new locations and that x is a new
clock. Let Agyy = (L, s, E, I, P, f, A), where

- L:{S,f}ULlLJLQ,

— E ={e1,e2,e3,e4}UE1UE>, where e; = (s, true, {}, 1), e2 = (s, true, {}, s2),
es = (f1,true, {z}, f), and eq = (f2, true, {z}, f).

—I(s)=I(f) =2 <0, I(l) = I1(I), for l € Ly, and I(l) = Iz(l), for | € Lo,
P(l) = P (1), for I € Ly, and P(l) = Px(l), for | € La, and

A(l) = Ay (1), for I € Ly, and A(l) = Ax(l), for | € Lo.

The case: ¢ AN1p. Let Agny = (L, (81, 82), E, I, P, (f1, f2), A), where

— L={(l3,l2) € L1 x Ly | A1(l1) A Az(l2) is satisfiable},

(lhlg) (l) eL
(ll,gl,’l"l,)EEl U
(l27g27T27l2) € by
{((l1,02), 91,71, (11, 02)) | (la,l2), (I, 12) € LA (I, 91,m1,04) € Ex } U

{((1,12), 9177"17(11’ 2)) | (I, 12), (l17l2) € LA (l2,92,72,15) € Eo }

— (lhlg) = Il(ll) /\IQ(ZQ) for (ll,lg) €L,
- P(lhlg)k = Pl(ll)k: +P2(l2)k7 for (lhlg) eLand 1 <k<mand
A(h,lg) = Al(ll) A AQ(Z2)7 for (lhlg) e L.

— E= 1< ((l1,l2),91 A ga,m1 Ura, (17, 15))

The case: ¢ ~1p. Let Ag~yp = (L1 U Lo, s1, E, I, P, fa, A), where

— E = {(f1,true,Cs, s2)} U E1 U Es, where Cj is the set of clocks used by Ay,
I(l) = L(I), for l € Ly, and I(l) = I>(l), for | € Lo,

P(l) = Py(l), for I € Ly, and P(I) = Py(1), for | € L.

— A(l) = A1(1), for | € Ly, and A(l) = Ay(l), for | € Lo.

Note that the transition from f; to se has to be taken immediately when f; is
reached, as the clock constraints imposed in I;(f1) does not permit durational
stays in fj.

5.2 Correspondence Between Interpretations of Formulae and Runs
of Corresponding MPTA

The above construction yields a correspondence between satisfiability of the
encoded DC formula and existence of runs in A4 featuring adequate prices. In
order to show this, we shall first establish a connection between DC observations
and the runs of automata.

Let A= (L,s,E,I,P, f,A) and a = 89 —op, 51 —2p, 82 =+ Sp_1 —op, Sn
be a run of (L,s, E,I, P). The duration of «, written A(a), is the sum of all

212 M. Franzle and M.R. Hansen

the durations of steps in a. We shall below define the set of DC observations
generated by run « as a set of interpretations observed over the interval [0, A(«)].
We first define anchored concatenation (71, [0, e1]) ~ (Z2, [0, e2]) of observations
(71,0, e1]) and (Z2, [0, e2]) as the set of observations 0 : (Z1, [0, e1]) ~ (Z2, [0, e2]),
as defined on page[205 This definition extends to sets of observations: S; ~ Sy =
Uo,es1,0.e5, 01~ O

Based on this, we will now define Intp(«) in two steps: First, we define Intp(s;)
for each step in a = s ﬂ’m s1.... Then, we concatenate these observations. For
each step s; in «, the set Intp(s;) of interpretations over that state is defined by:

Intp(s;) = {(Z,]0,0]) | T an arbitary interpretation}
if = 0 or if s; is reached via an edge e € F in «,
Intp(si) = {(Z,[0,d]) | Z,[0,d] = [A(L:)]}

if s; is reached by a delay transition of duration d in a.

The set of observations Intp(«) corresponding to « is then defined as the con-
catenation of the individual Intp(s;):

Intp(a) = Intp(sg) — Intp(sy) — -~ Intp(sy) -

With the above correspondence between runs and interpretations, we can
now formalize the correspondence between DC formulae and the corresponding
multi-priced timed automata.

Lemma 5. Let ¢ be a DC\-, formula and Ay = (L, s, E, I, P, f, A) be the corre-
sponding multi-priced timed automaton.Then Z,[0,¢e] = ¢ iff there exists a run
a of Ay with (Z,]0,€]) € Intp(ar) and cost(a); ;5 kj for 1 < j <m.

Proof. By induction over the structure of ¢. O

As a consequence, we obtain a correspondence between satisfiability of the en-
coded DC formula and existence of runs in Ay featuring adequate prices.

Theorem 3. Let ¢ be a formula in DCyp, let Ay = (L,s, E, I, P, f, A) be the
corresponding multi-priced timed automaton, and let w = (k1,...,km—1). Then
mincost(r, 5. g,1,p),u(f) < km iff ¢ is satisfiable.

Proof. By the previous lemma, Z, [0,b] |= ¢ iff there is a run a of A, such that
(Z,10,b]) € Intp(a) and cost(cr); >; kj for 1 < j < m. As Intp is a total function,
this implies that ¢ is satisfiable iff Ay has run a with cost(a); 1; k;. By b;j=<,
for 1 <j < m, and <,,=<, this is the case iff mincosty (s) < kn,. a

The above construction can also be used for model-checking timed automata wrt.
negations of DC formulae. The cornerstone is to exploit an appropriate automata
product between timed automata and priced timed automata to establish an
automata-based verification procedure. The model-checking problem considered
here has the form A |= —¢, where A = (L4, s1, E1, I1, A1) is an arbitrary timed
automaton (L1, s1, F1, 1), extended by a labeling A; : L1 — S of locations with

Deciding an Interval Logic with Accumulated Durations 213

state expressions. We say that A | —¢ holds iff for each run « of A, the setf] of
all corresponding DC interpretations Intp(«) satisfies —¢.

Theorem 4. Let A = (L1, $1, E1,11,41) be a timed automaton (L1, 1, E1,11)
extended by a location labelling Ay : L1 — S, let ¢ be a DCypy formula, let
A¢ = (L27$2’E2712’P27f2’/12), and let u = (kl,...,km_l). Then A): _\¢ fo
mincost(r, 5. g,1,p),u(f X L1) > ki, where

— B=(L1,%1,E1, I, Po,s, A1) is A converted to an MPTA by extension with
the trivial cost function Py = 0 and an irrelevant terminal state s € Ly,

— (L,s,E,I,P, f,P) = Ay ® B is the multi-priced automaton product from case
o N,

Proof. Similar to the previous theorem it can be shown that for each run « of
A and each model (Z, [0,b]) of ¢ with (Z,[0,0]) € Intp() it is the case that «
is a run of Ay ® B with cost(a); p; kj for 1 < j < m. Le., A has a run « with
Intp(a) = ¢ iff mincost(z 5 .7,p)u(f X L1) < km. Consequently, all runs of A
Satisfy _'¢ iff miHCOSt(L’S)E)I)p)’u(f X Ll) > k‘m O

Model-checking timed automata against DCyp formulae is thus possible.

6 Conclusion

Within this paper, two new decision procedures for rich subsets of Duration
Calculus have been devised:

1. We have shown that satisfiability of DC formulas with linear combinations of
accumulated durations, yet chop confined to occur in positive context only,
is decidable.

2. A model-checking procedure for timed automata against DC formula with
only upper bound duration constraints and only a single, outermost negation
has been established based on a reduction to multi-priced timed automata.

Both procedures do considerably extend the scope of automatic procedures
for DC beyond the previous state of the art: These procedures are the first to
combine reasoning over accumulated durations and over chop within automated
decision procedures. Furthermore, (2.) extends model-checking procedures for
timed transition systems against accumulated duration properties, as pioneered
in [22], from timed transition tables with per-transition delays to timed automata
with clocks.

For the first of the two procedures, it is clear that the positive decidability
results marks the frontier to undecidability, as admitting chop in negative context
leads to undecidability [20]. The correspondence of DC without accumulated
durations to timed regular expressions [2] shown in [§], together with the lacking
closure of timed regular languages under negation [I], shows that decidability is

5 Note that the labeling A1 may permit multiple different valuations within a single
location [€ L.

214 M. Franzle and M.R. Hansen

even lost without nesting of chop under different polarity; negative chop itself
leads to undecidability. Accordingly, the encodings of two-counter machines by
DC formulas used in [20] or of stop-watch automata used in [7, App. A] to
demonstrate undecidability of DC do only use negative chop.

With respect to the model-checking result, the exact borderline to undecid-
ability is open. While one might well expect that lower bounds on accumulated
durations should also be decidable, e.g. through replacing minimum price reach-
ability in priced timed automata by maximum price reachability, the current
notion of maximum price reachability in priced timed automata does not permit
an adequate reduction. Being inspired by scheduling problems, the theory of
priced timed automata does define the maximum price to be infinite as soon as
path length in the automaton is unbounded. This does interfere with the notion
of accumulated duration, as an accumulated duration may well be bounded even
though the number of state changes in the run is not a priori bounded, as can
be seen from the formula ¢ = (¢ < 2A [P > 2). This formula is unsatisfiable, yet
the automaton construction from Sect. Bl yields an automaton with unbounded
path length (cf. Fig. [l(c)) such that maximum cost reachability would consider
the cost P to be infinite, suggesting [P > 2 to hold.

Another open question is whether the more restricted notion of chop used in
Interval Duration Logic (IDL) [I7] facilitates model-checking of larger formula
classes. It is obvious that all the procedures detailed in this paper do also work
on IDL with the appropriate minor modifications.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Comput. Sci.,
126(2):183-235, 1994.

2. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In
G. Winskel, editor, 12th Annual IEEE Symposium on Logic in Computer Science
(LICS’97). IEEE Computer Society Press, 1997.

3. G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A SAT-
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In A. Voronkov, editor, Automated Deduction — CADE-18, volume 2392
of Lecture Notes in Computer Science, pages 193-208. Springer-Verlag, 2002.

4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal — a tool
suite for automatic verification of real-time systems. In R. Alur, T. Henzinger, and
E. Sonntag, editors, Hybrid Systems III — Verification and Control, volume 1066
of Lecture Notes in Computer Science, pages 232-243. Springer-Verlag, 1997.

5. A. Bouajjani, Y. Lakhnech, and R. Robbana. From duration calculus to linear
hybrid automata. In P. Wolper, editor, Computer Aided Verification (CAV ‘95),
volume 939 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

6. H. Dierks. Synthesizing controllers from real-time specifications. In Tenth Interna-
tional Symposium on System Synthesis (ISSS ‘97), pages 126-133. IEEE Computer
Society Press, 1997.

7. M. Fréanzle. Controller Design from Temporal Logic: Undecidability need not mat-
ter. Dissertation, Technische Fakultdt der Chr.-Albrechts-Universitiat Kiel, Ger-
many, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Deciding an Interval Logic with Accumulated Durations 215

M. Franzle. Model-checking dense-time duration calculus. Formal Aspects of Com-
puting, 16(2):121-139, 2004.

. M. Franzle and C. Herde. Efficient proof engines for bounded model checking of

hybrid systems. In J. Bicarregui, A. Butterfield, and A. Arenas, editors, Proceedings
Ninth International Workshop on Formal Methods for Industrial Critical Systems
(FMICS 04), volume 133 of Electronic Notes in Theoretical Computer Science,
pages 119-137. Elsevier Science B.V., 2005.

J. Halpern, B. Moszkowski, and Z. Manna. A hardware semantics based on tempo-
ral intervals. In J. Diaz, editor, International Colloquium on Automata, Languages,
and Programming (ICALP‘83), volume 154 of Lecture Notes in Computer Science,
pages 278-291. Springer-Verlag, 1983.

J. Hoenicke. Combination of Processes, Data and Time. Dissertation, Carl von
Ossietzky Universitat, Oldenburg, Germany, 2006.

Y. Laknech. Specification and Verification of Hybrid and Real-Time Systems. Dis-
sertation, Technische Fakultét der Chr.-Albrechts-Universitat Kiel, Germany, 1996.
K. G. Larsen and J. I. Rasmussen. Optimal conditional reachability for multi-
priced timed automata. In V. Sassone, editor, Foundations of Software Science
and Computation Structures (FOSSACS ’05), volume 3441 of Lecture Notes in
Computer Science, pages 230-244. Springer-Verlag, 2005.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems,
volume 1. Springer-Verlag, 1992.

E.-R. Olderog and H. Dierks. Decomposing real-time specifications. In H. Lang-
maack, W. de Roever, and A. Pnueli, editors, Compositionality: The Significant
Difference, Lecture Notes in Computer Science. Springer-Verlag, 1998.

A. P. Ravn. Design of Embedded Real-Time Computing Systems. Doctoral dis-
sertation, Department of Computer Science, Danish Technical University, Lyngby,
DK, Oct. 1995. Available as technical report ID-TR: 1995-170.

P. Sharma, P. K. Pandya, and S. Chakraborty. Bounded validity checking of in-
terval duration logic. In TACAS 2005, volume 3440 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

A. Tarski. A decision method for elementary algebra and geometry. RAND Cor-
poration, Santa Monica, Calif., 1948.

Zhou Chaochen and M. R. Hansen. Duration Calculus — A Formal Approach
to Real-Time Systems. EATCS monographs on theoretical computer science.
Springer-Verlag, 2004.

Zhou Chaochen, M. R. Hansen, and P. Sestoft. Decidability and undecidability
results for duration calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors,
Symposium on Theoretical Aspects of Computer Science (STACS 93), volume 665
of Lecture Notes in Computer Science, pages 58—68. Springer-Verlag, 1993.

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5):269-276, 1991.

Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Linear duration
invariants. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘94), volume 863
of Lecture Notes in Computer Science, pages 86—109. Springer-Verlag, 1994.

From Time Petri Nets to Timed Automata:
An Untimed Approach*

Davide D’ Aprile', Susanna Donatelli', Arnaud Sangnier?, and Jeremy Sproston'

1 Dipartimento di Informatica, Universita di Torino, 10149 Torino, Italy
2 Lab. Spécification & Verification, ENS Cachan — CNRS UMR 8643, France
{daprile,susi, sproston}@di.unito.it,
sangnier@lsv.ens-cachan. fr

Abstract. Time Petri Nets (TPN) and Timed Automata (TA) are widely-used for-
malisms for the modeling and analysis of timed systems. A recently-developed
approach for the analysis of TPNs concerns their translation to TAs, at which
point efficient analysis tools for TAs can then be applied. One feature of much of
this previous work has been the use of timed reachability analysis on the TPN in
order to construct the TA. In this paper we present a method for the translation
from TPNs to TAs which bypasses the timed reachability analysis step. Instead,
our method relies on the reachability graph of the underlying untimed Petri net.
We show that our approach is competitive for the translation of a wide class of
TPNs to TAs in comparison with previous approaches, both with regard to the
time required to perform the translation, and with regard to the number of loca-
tions and clocks of the produced TA.

1 Introduction

As real-time systems become ever more complex and diffuse, it becomes increasingly
important to develop methods for reasoning about such systems in a formal way. Two
widely-used formalisms for the modeling and analysis of real-time systems are Time
Petri Nets (TPNs) [15] and Timed Automata (TA) [3]. TPNs and TA are dense-time
formalisms, which implies that their underlying state space is infinite, and therefore
verification techniques which enumerate exhaustively the state space cannot be applied.
In general, this difficulty is addressed by applying symbolic methods or by partitioning
the infinite state-space. With regard to TA, the well-known region graph [3]] or zone-
based graph [2] techniques are two such methods, the latter of which forms the basis of
the techniques implemented in tools such as UPPAAL [4/18]] and KRONOS [19/12]]. With
regard to TPNs, in [5U14] an approach based on the so-called state class graph (SCG)
construction is presented. In the SCG the nodes are sets of states, represented by a pair
comprising a marking and a firing domain, where the firing domain represents the set of
times at which a transition can be fired. The SCG construction allows the verification
of untimed reachability and LTL properties [Si14], while variants of this method allow
the verification of CTL, and a subset of TCTL [1]] properties [6/17].

A different approach to allow TCTL model checking of TPNs is to produce from
a TPN a timed bisimilar TA which maintains TCTL properties, and then verify it by

* Supported in part by Miur project Firb-Perf and EEC project Crutial.

0. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 216-230] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

From Time Petri Nets to Timed Automata: An Untimed Approach 217

means of model-checking tools (for example, the above cited UPPAAL and KRONOS).
In the literature there are two different techniques for the translation of TPNs to TA.
The first is based on the Petri net (PN) structure [8], and is generally characterized by
a potentially high number of clocks in the produced TA; the second is based on ex-
ploration of the timed state space, for example in [13]], in which a method based on an
extended version of the SCG is used to compute the so-called state class timed automa-
ton (SCTA), and in [[10], where zone-based timed reachability analysis (see [2]) allows
the construction of the so-called marking timed automaton, that in the following we will
call the zone-based marking timed automaton (ZBMTA). The ZBMTA always has no
more locations and edges than the SCTA, while the latter has no more clocks than the
former. Finally, it should be noticed that, in [LO/13]], the reachability techniques for the
generation of a TA are generally employed again subsequently to analyze the produced
TA; this fact could increase the total verification time of the TPN under investigation.

In this paper we present a different technique for the translation of a TPN into a
(strong) timed bisimilar TA, by using the reachability graph of the underlying untimed
Petri Net to build what we have called the marking class timed automaton (MCTA).
We will show that the SCTA, obtained by applying [13]], and the MCTA, obtained by
applying our approach, are incomparable in the number of locations and edges, while
the MCTA produces a greater or equal number of locations and edges with respect to
the ZBMTA approach, obtained by applying [10]; finally, the number of clocks may
be equal to that of the SCTA, and less or equal to that of the ZBMTA. From these
considerations it may be deduced that our approach represents a competitive choice
for a number of classes of systems, especially when a trade-off is needed between the
number of the produced locations and clocks; we will present experimental evidence to
show this. The main disadvantage of our method is the requirement of boundedness of
the underlying untimed PN, while [[10/13]] require only TPN boundedness. In order to
address this problem, we give some suggestions to partially bound specific PN subnets
of the TPN under investigation. In addition, because our method may explore some
paths in the untimed Petri net which are unreachable in the TPN, resulting in a greater
number of locations, we consider an adjustment to the MCTA construction algorithm
which, for some TPNs, can alleviate this problem.

This paper is organized as follows: Section [2l provides some background, while Sec-
tion [3| explains our approach to verify TPNs by translation to TA, and makes a com-
parison with the SCTA and ZBMTA approaches. Section[d] presents some optimization
techniques: a simple method to partially resolve the above cited unreachable path prob-
lem, a variant for reducing the number of locations of the produced TA, and some
ideas to address the boundedness requirements of our approach. Section [3] describes
our tool, GREATSPN2TA, for the translation of TPNs to TA in the input language of
the KRONOS model checker, and reports some experimental results, obtained on a set of
case studies, also comparing them against the results of the tool ROMEO [9116], which
implements the SCTA and ZBMTA approaches. Section[6] concludes the paper.

2 Preliminaries

Timed Transition Systems. Let X be a finite set of events, and let R>o be the set of
non-negative real numbers. A timed transition system (TTS) S is a tuple (Q,4¢°,Z, —)

218 D. D’ Aprile et al.

where Q is the set of the states, ¢° € Q is the initial state, and —C Q x (£UR>q) x Q
is the set of edges. We use ¢ — ¢’ to denote (q,a,q') €—, which indicates that when the
state of the system is g, it can change to ¢’ upon label a € LUR>(. The edges labeled
with an event of X are called discrete edges and the edges labeled with a non-negative
real number are called continuous edges. A path is a finite or infinite sequence of edges
q0 oy q1 2L ... A set of states Q' C Qs reachable from a state g if there exists a finite

path go =% g1 & - 5 ¢,,, such that go = g and ¢, € Q.

Timed Automata. Timed Automata (TA) [3] are automata extended with clocks, which
are real-valued variables, and which increase at the same rate as real-time. Let X be a
set of clocks, and @(X) be the set of the clock constraints over X, which are defined by
the following grammar: @ :=x < ¢|x > c|x < ¢|x > ¢|Q1 A @2, where x € X and ¢ € Qx¢
is a non-negative rational number. A fimed automaton A is a tuple (L,I°,%,X,I,E)
where L is a finite set of locations, [° € L is an initial location, I is a (total) function
L — ®(X) that associates to each location an invariant condition (i.e. a clock con-
straint), and E C L x I x ®(X) x 2X x 2X* x L represents the set of the switches. The
switch (I,6,0,A,p,!") € E represents a switch from [to I’ on the event 6, with the guard
¢ (a clock constraint) describing the set of clock values that can enable the switch, the
set A C X describing the clocks that are set to 0 by the switch, and p C X? describing
how clocks should be renamed when the switch is taken. The semantics of TA is de-
fined by means of a TTS, and its definition is standard (in particular, see [7413]] for the
semantics of the variant of TA with clock renaming); we omit it for reasons of space.
In [3], the problems and the possible solutions regarding the infinite number of states
and transitions of such a TTS are also illustrated. This leads to the use of abstraction
methods, for example the region graph and the zone graph.

Time Petri Nets. A Time Petri Net (TPN) T [313] is a tuple (P, T,W~ ,W* My, (o, B))
where P = {pi,...,pm} is a finite set of places, T = {11,...,t,} is a finite set of transi-
tions, W~ : (NP)T is the backward incidence function, W : (NP)T is the forward inci-
dence function, My € N¥ is the initial marking, and o0 € (Q>0)” and B € (QsoU{eo})T
are the earliest and latest firing time functions.

The semantics of a TPN 7 can be represented by a TTS Sg. Before introducing
the semantics we define the following notation. A marking M is an element of N”. In
the following, we use standard notation for markings, such as M > M’ if and only if
M(p) > M'(p) for all p € P, and M — M’ where M — M'(p) = M(p) — M’ (p) for all
p € P. A valuation is a vector v € (R>¢)" such that each value v; represents the elapsed
time since the last time transition #; was enabled, or since the launching of the system if #;
was never enabled. The initial valuation 0 € (R>)" is defined by 0; =0, forall 1 <i<n.
A transition ¢ is said to be enabled for a marking M if and only if M > W~ (¢). For all
(te,M,t;) € T x NP x T, let Tenabled(ty,M,t;) = (M —W~(t;,) + WT(t;) > W~ (1)) A
(M—W~=(t;) <W~(t)) V (tx = 1;)). Intuitively, Tenabled(ty,M,t;) = true if and only
if #; is newly enabled after the firing of #; in M, where a transition #; is said to be
newly enabled after the firing of a transition #; in M if #;, is not enabled for the marking
M —W~ (1) (orif t; = t;) and it is enabled for the marking M' =M — W~ (t) + W ().

From Time Petri Nets to Timed Automata: An Untimed Approach 219

The TTS S = {Q,q0,T,—) associated to a TPN T = (P, T,W~ W+ My, (o, p)) is
defined by Q = N¥ x (R>0)", qo = (Mo,0), and —€ Q x (T URx¢) x Q is the set of
edges defined by:

1. The discrete edges are defined by, for all ¢, € T

M > W_(Ii) AM' =M — W_(l,‘) +W+(Ii)
o(ti) < v <B(t)

, {o if Tenabled(ty, M, 1;)

1

(M,v) 5 (M' V) <

V=]
vr otherwise.

2. The continuous edges are defined by, for all § € R>:

(M,v) 3, M) eV =v+38, andVk e {1,---,n}, (M >W (&) = v, <B(t)) -

The last condition on continuous transitions ensures that the time that elapses in a mark-
ing cannot increase to a value which would disable transitions that are enabled by the
marking. For TPNs, as for TA, it is not possible to work directly on the TTS which
represents the behavior of the TPN, because this TTS has infinitely many states (and
infinitely many labels). Again, the use of abstraction methods permit the construction of
a transition system where the labels expressing the passing of time are eliminated and
where states are regrouped into classes on which the reachability analysis can be done.
The state class graph 5] and the zone graph [10] are examples of such an approach.
However these methods do not always give a result because, as pointed out in [5], for a
TPN the problems of reachability and of boundedness are undecidable.

3 From Time Petri Nets to Timed Automata

We now describe our approach for translating a TPN model into a TA, called the
marking class timed automaton (MCTA), in order to subsequently perform analysis
on MCTA. Section[3.T]is devoted to this technique, also providing a proof that the TTS
of the TPN and of the MCTA are timed bisimilar, while in Section [3.2] our approach is
compared with those based on the SCTA and the ZBMTA [13!10].

3.1 MCTA of a TPN

In this section we present the MCTA construction, where the constructed TA has
an equivalent (timed bisimilar) behavior to that of a TPN. Consider the TPN T =
(P,T,W= W+t My, (c,)). We will “untime” the TPN 7T (that is, remove the timing
functions (o, B)) in order to obtain a Place/Transition PN P = (P, T,W~ W™ Mj).
We denote by R,(My) C NP the reachability set of P (the set of markings that P
can reach from its initial marking My). When bounded (i.e. (3k € N)(Vp € P)(VM €
Ru(Mp))(M(p) < k)), the behavior of this PN can be represented by the reachabil-
ity graph (RG), which is an untimed finite-state transition system (Q, o, T, —) where
0 = Ru(My), go = My, and the edge relation — is defined by classical 1-step reachabil-
ity in untimed PN: for all M,M" € R,(My), forallt € T:

220 D. D’ Aprile et al.

MEM SM>W () andM =M+WHe) =W (1).

The MCG construction. We now present the algorithm which builds the marking class
graph MMCG) T'(T) of the TPN ‘7, which is a transition system I'(7) = (C,Co, T,
—me). The states C of T'(T) are called marking classes. Each marking class is a triple
of the form (M, trans), comprising a marking M of 7, a set y of clocks, and a function
trans : Y — 2T associating a set of transitions to each clock in y. The initial marking
class Cp = (Mo, {xo },transo) is such that My is the initial marking of ‘T, the set of clocks
of Cy is composed of a single clock xo, and transy is defined by transo(xo) = {t € T |
t is enabled for My}. To build the graph, we also need the notion of clock similarity
(adapted from [13]]), in order to group certain marking classes together. Two marking
classes C = (M, y, trans) and C' = (M',y/,trans’) are clock similar, denoted C = C', if
and only if they have the same markings, the same number of clocks and their clocks
are mapped to the same transitions, written formally as:

C=C eM=M,|x|=Iy|andVx € x,3 €y, trans(x) = trans(x’) .

The MCG construction is shown in Algorithm[I] and is a classical breadth-first graph
generation algorithm which starts from the initial unexplored marking class Cp. At each
step an unexplored marking class C is marked as explored, all marking classes C’ reach-
able in one step (firing of a transition) from C are added to the set of unexplored classes,
unless an equivalent one (according to clock similarity) has already been considered be-
fore. The algorithm terminates when all unexplored markings have been considered. In
lines 1.6 to 1.13, the set of clocks %’ and the function trans’, which associates clocks
to enabled transitions, are computed. We note that the construction of this graph can
be done by following the different paths in the reachability graph of the underlying PN
adding a clock set)¢’ and a relation trans’, and possibly “unlooping” some loops of
the reachability graph when a marking is reached many times with associated marking
classes which are not clock-similar.

The MCTA Construction. From the MCG defined above, it is possible to build a TA
A(T) which has the same behavior as the TPN 7, as we will show in the next section.
Let T =(P,T,W~ W+ My,(c,B)) beaTPN and ['(‘T) = (C,Co, T, —mc) its associated
marking class graph. The marking class timed automaton (MCTA) A(‘T) associated to
T is the TA (L,1p,%,X,I,E) defined by:

— L = (C is the set of the marking classes;

- lp = Cp, where Cy is the initial marking class (Co = (Mo, {x0},transo));

-X= U(M,X,trum‘)GC X

Eis th’e set of switches defined by:
VC; = (M;, Y, trans;) € C,YCj = (Mj,y,trans;) € C
3C; e Cj < 3(liya,0,\,p,1;) € E such that
li= C,‘,lj = C_,-,a =1,
o = (trans; '(1;,) > ot;)), A= {trans;l(tk)\ 1 enabled (ty,M;,t;) = true},
Vx € i, Vx' € xj, such that trans;(x) C trans;(x),x' & h,p(x') =x;

- VG = <MiaXi7tm”Si> €C, I(Cl) = /\xexi,tetmnx,'(x) (X < B(t))

From Time Petri Nets to Timed Automata: An Untimed Approach 221

input : The initial marking class Cy of a TPN 7
output: The MCG of T

1.1 MCG :=0; New := Cp;
1.2 while New is not empty do

13 C := remove (New) ; (where C = (M, y, trans))
14 Fireable(C) := {t | t is enabled for M };
1.5 for all transitions t € Fireable(C) do
1.6 M =M+W*t(t)—W(1);
1.7 For each clock x € , remove from trans(x) all the transitions #;, such that #; is
enabled in M and is not in M — W™~ (¢), to obtain a relation trans’;
1.8 The clocks whose image by trans’ is empty are removed from 7, to obtain a set
of clocks y/;
1.9 for all transitions t;, which verify lenabled (t;,M,t) = true do
1.10 if a clock x has already been created for the computation of C' then
111 ty, is added to trans’(x);
112 else
1.13 anew clock x;, is created; n is the smallest available index among the
clocks of ' and trans'(x,) = t;
1.14 end
115 end
1.16 C' = (M"Y trans');
1.17 if there is a marking class C" in MCG such that C' = C" then
118 MCG :=MCGU{C 5, C"};
1.19 else
1.20 MCG :=MCGU{C 5, C'} and add(New,C');
1.21 end
1.22 end
1.23 end

Algorithm 1. MCG construction

In order to build the MCTA of a TPN, the number of marking classes has to be
bounded, otherwise the construction of the MCG will not terminate. Note that the MCG
has a bounded number of marking classes if and only if the underlying untimed PN is
bounded. We recall that in contrast to the case of the boundedness of TPN [5], the
boundedness of a PN is decidable. We will return to boundedness issues in Section [4.3]

Bisimulation. We now define an equivalence relation between the states of the TPN 7
and the states of its associated MCTA, and we will prove that this relation is a timed
bisimulation. Our results are analogous to those in the context of the SCTA [13]] and
the ZzZBMTA [10].

First, we recall the definition of timed bisimulation (see, for example, [8.13.10]). Let
S1={(0 ,q?,Zl ,—1)and Sy = (Qz,qg,Zz, —) be two TTSs. The equivalence relation
~C Q1 x Q2 on Q1 and O is a timed bisimulation if and only if, for all a € ZUR>0:

. a . a

— if 51 ~ 57 and 51 — s/ then there exists sp — s5 such that s} ~ s};
. a . a

- if 51 ~ 57 and s, — s} then there exists s; — s} such that s} ~ s5.

222 D. D’ Aprile et al.

Let T = (P,T,W~,W* My, (o,B)) be a TPN and A(7) its associated MCTA. We
consider Q. the set of reachable states of 7 and Q4 the set of states of A(‘7T). We
define the relation ~,,,C Q. X Q4 by the following rule. For all s = (M, v¢) € Q., for
all r = (Cy,va) € Q4 (with C, = (M, X, trans,)):

M = M, and
S ~me ¥ < ¢ Vt € T such that ¢ is enabled in M,
V(1) = va(x) with x € 3, such that 7 € trans,(x) .

Theorem 1. The binary relation ~,,,C Q1 X Qg is a timed bisimulation.

If we consider a TPN T = (P, T,W~,W* My, (o)) and its associated MCTA A(T),
because we have by construction (Mo,0) ~,,. (Cp,0), we conclude that a marking M
is reachable from My in 7 if and only if there exists a state of A(7') whose associated
marking (within the state’s marking class) is M. The timed bisimulation property also
allows us to obtain the set of states of 7 which satisfy a TCTL property: the TCTL
property can be verified on A(‘T), and the resulting set of states of 7 satisfying the
property can be obtained using ~,,..

Example. We now consider the application of our procedure to the TPN of Figure [1l
The corresponding MCTA is given in Figure 2l The structure (locations, represented
by nodes, and switches, represented by arcs) of the MCTA is derived from the MCG,
which provides also the following information:

— for every location, information regarding the corresponding marking of the consid-
ered (PN underlying the) TPN, as well as information about which clock is linked
to the currently enabled transitions in the corresponding state of the original model;

— for every arc, the transition which fires in the TPN.

The MCTA construction step labels the locations with invariants, while guards, clock
resets and clock renaming functions are added to the arcs. Guards are written above the
line labeling each arc, whereas resets and clock renaming are indicated below. Starting
from the initial location Cy, we have two newly enabled transitions, #; and ,, to which an
unique clock, named x, is assigned; the corresponding invariants and guards, indicated
on the corresponding outgoing arcs, are defined with respect to the timing intervals in
the TPN under translation. When the outgoing arc labeled #; is taken from location Cy
to location C; (between time 4 and 5), the transition named #, is still enabled, so the
clock x remains assigned to #, and must not be reset before entering C. In location C;
the automaton cycles forever, taking the arc labeled #, every | time unit, and always
resetting the clock x before entering the same location, because #, is always newly
enabled after each firing. When the outgoing arc labeled 7, is taken from location Cy
to location C; (after exactly 1 time unit), the transition named ¢#; is still enabled, so the
clock x remains assigned to it (and x is not reset), while the fired transition #, is newly
enabled, and so is assigned to a new clock, y, which must be reset before entering
C>. In location C, the automaton can cycle every 1 time unit, resetting the clock y on
every cycle, because 1, is always newly enabled after each firing. When the outgoing
arc labeled ¢, is taken from location C; to location C; (after between 4 and 5 time units
since t; was enabled), the transition named , is still enabled, but in C; the transition #,

From Time Petri Nets to Timed Automata: An Untimed Approach 223

JORRO
al 2 I

[4,5] C——2 C—— [11]

Fig.1. A TPN model T

C M trans

Co po+p1 x— (t1,12)
Ci po x—(n)
Gy po+p1 x— (1)

y ()

x;p(y)=x

Fig. 2. The MCTA corresponding to TPN 7 in Figure[l]

is already assigned to a clock named x; this implies that the clock y must be renamed to
x while taking the arc. Note that the guard on the arc between Cy and Cj is never true,
due to the invariant associated with Cy, but that C; is reachable via C;.

3.2 Comparing the MCG, ESCG, and ZBMCG Approaches

In this section we compare the ESCG, MCG, and ZBMCG approaches, taking into
account the cardinality of locations and edges, as well as the number of clocks of the
produced TA. We recall that, with respect to the MCG, the ESCG nodes are enriched by
the firing domain constraints [[13]], while in the ZBMCG nodes the available information
regards only the reached markings [10].

We first observe that the MCG and the ESCG approaches are incomparable with
respect to the number of generated locations. We provide two examples to substantiate
this remark. Let [MCG|s and |ESCG]|s be the cardinality of locations of the MCG
and ESCG, respectively, of the TPN T of Figure[Il The fact that [MCG|; = 3 can be
derived from the TA shown in Figure P while the ESCG construction for 7" leads to
|[ESCG|s = 9. The TA corresponding to the ESCG is shown in Figure 3l The table
of Figure 3] defines, for each extended class ESC, the net marking M, the association
trans of transitions to clocks, and the firing domains D of transitions. It is clear that, in
this net, the ESCG construction distinguishes more than the MCG one. This happens
because, in the ESCG, for each reachable marking there may be a number of associated
firing domains. FigureH] instead, give us an example of a TPN ‘T for which [MCG|s >
|[ESCG], as shown in Figures[§and[@l In this case, the MCG algorithm, being unable
to identify unreachable paths, produces an higher number of locations, two of which

224 D. D’ Aprile et al.

ESC M D trans
ESCy po+p1 4<y <5 X (t1,12)
1<t<1
3<nn—n<4
y>1Ax>3 ESCi po+pi 3<n <4 x e (t)
y n | y=1Aa2 1<n<1 ye ()
y 2<n—-1n<3
ESCy po+p1 2<n <3 x e (n)
1<n<1 y—(n)
5] 1<t —-1<2
ESCs po+p1 1<n <2 x e (n)
1<n<1 y ()
0<—-n<l1
yzlrmzl gse, py 0<n <0 y ()
¥y 1<t —-n< -1
ESCs po+pi 0<n <1 x e (t)
1<n<1 y—(n)
1<y -1<0
ESCe Po 1< <1 Y <t2>
ESC, Po 0<n<l1 Y <t2>
ESCs po+pi 0<1 <0 x e (t)
1<n<1 y—(n)
y>1Ax>0 h—th=-1

»x

Fig. 3. The SCTA corresponding to TPN 7 in Figure[I]

Po

Fig.4. A TPN model 7, with [MCG|s > |ESCG|q

are unreachable in the MCTA. In fact, the ESCG construction process, thanks to the
firing domain computation, correctly “cuts off” the untakeable 7, and 73 transitions, and
so the C; and C3 locations are not reached, while this does not happen with the MCG.

Next, we observe that the ZBMCG approach results in no more locations and
switches than the MCG and ESCG approaches. The ZBMCG method generates only
those markings that are reachable in the TPN, whereas our MCG approach generates
markings that are reachable in the underlying untimed PN. For this reason alone, it
is easy to show an example in which the number of locations and switches produced
by the ZBMCG method is less than or equal to the number of locations and switches
produced by our MCG method. Now note that each location produced by the ZBMCG
method corresponds to a set of locations produced by the ESCG method: the markings
corresponding to the locations will be the same, but, in the case of the ESCG method,
the locations are enriched with firing domains. A similar argument can be used for the
switches. Taking again the TPN as in Figure[T] in Figure[7l we give the TA obtained by
applying the ZBMCG technique.

From Time Petri Nets to Timed Automata: An Untimed Approach 225

ESC M D trans
fH ESCo po i =1t =213 =4 x — (t1,12,13)
Hh—t =1
—th=2
x>1 n—1 =3
0 ESC] P1 0 0

Fig. 5. The SCTA corresponding to TPN 7 in Figure 4]

x>1 x>4

[*
x>2
t 5] 0 3 cC M trans

Co po x — (t1,12,13)

Ci p1 0
G p2 0
G p3 0

Fig. 6. The MCTA corresponding to TPN 7 in Figure @

Despite the fact that the ESCG and the ZBMCG can result in smaller TA in terms
of locations and switches or clocks than the MCG, we show in Section [3]that, when ap-
plied to a number of examples from the literature, the proposed MCG-based translation
can be competitive in size and execution time.

4 Improving the Effectiveness of the MCG Approach

In this section we present some modifications of the MCG algorithm, in order to im-
prove the effectiveness and applicability of our proposed solution.

4.1 Reducing the Number of Unreachable Locations

The first modification allows to “cut off” paths that could obviously not be taken, such
as the firing of #; in Cy of the example in Figures [T[land 2l As observed before in the
TPN of Figure[ll when #; and 1, are newly enabled only f, can fire. Cutting off the edge
from Cy to C; does not change [IMCG]| 7 in this case, but it does for the TPN of Figure[d]
because it discards the possibility of firing 7, and #3. Line 1.4 of the algorithm can be
changed to check the earliest and latest firing time of the newly enabled transitions, and
to remove from consideration transitions that are not firable:

Fireable(C) := {t | t is enabled for Mc}\
{t| 3¢ € T.3x € ¢ such that 1,1’ € transc(x) and a(t) > B(r')};

Observe that this modification takes timing information into account, as ESCGs and
ZBMCGs do, but with the difference that the check does not consider the elapsed en-
abling time (which is encoded in the state class domains in ESCGs, and in zones in
ZBMCGs). The TPN on the left part of Figure [§] illustrates an effective case of the

226 D. D’ Aprile et al.

1 Po) n o G cC M trans
Co 0 x—{(n)
e Ci po x— (t1,12)
[47 5] [27 3} L C; 2p00 X <]t2>2
ye ()

Fig.8. A TPN model 7, for which the application of the local optimization is useful

modification of the algorithm: the original MCG is infinite (since &, is unbounded),
but the modified algorithm stops because, as shown on the central and right part of
Figure[8] the firing of #; in C; is not considered.

4.2 Trading Clocks for Locations and Speed

Our second modification increases the number of clocks, but decreases the number
of locations and the computation time. This variant to the MCTA generation proce-
dure consists of the assignment of a unique clock for every enabled transition, and not
a unique clock for every set of newly enabled transitions: indeed, unless two transi-
tions are always enabled at the same time, it is better to associate to them two separate
clocks. As a consequence the expensive check of clock similarity can be removed from
the algorithm. We call MCTA/** the automata obtained with such a procedure. The
construction of the MCTA* of the TPN of Figure [[lresults in the same TA as that
corresponding to the ZBMTA and is shown in Figure[7} assigning two different clocks,
x and y, to the newly enabled transitions #; and #, in location Cy let us merge Co and C;
into a unique location, decreasing from 3 to 2 the number of required locations.

4.3 Dealing with Unboundedness

Consider the TPN on the left part of Figure[9] illustrating a producers-consumers sys-
tem model distributed with the ROMEO package. The set &, of this net is unbounded,
but the TPN itself has a bounded behavior because the consumers (top part of the net)
are always faster than the producers, so that tokens never accumulate unboundedly in
place P3. Observe that in TPN models whose boundedness depends of time, even the
smallest change in the definition of the timing constraints may cause non-termination of
the ESCG and ZBMCG algorithms; on the other hand such models may be of interest
in many application fields. The method we propose here, inspired by similar techniques
for performance evaluation of unbounded stochastic Petri Nets, is to artificially bound

From Time Petri Nets to Timed Automata: An Untimed Approach 227

Fig. 9. An unbounded TPN (left), and the same model after the bounding procedure (right)

the net, using an initial, random guess for this bound, and then to check on the corre-
sponding TA whether the bound is too low. We proceed as follows:

1. Compute the P-semiflows of the untimed PN.

2. If all places are covered by at least one P-semiflow, then the net is bounded and we
can apply the MCG algorithm in the standard way; otherwise, for all places p; not
covered by a P-semiflow, build the complementary places p;, and set My(p;) to a
guessed value (we use P to denote the set of complementary places).

3. Build the MCTA using Algorithm[il

4. Finally, check on the MCTA whether there is a reachable state of the TA of mark-
ing M, in which the complementary place is actually limiting the original timed
behavior (formally, 3t: Vp € PM(p) > W~ (p,t) A3p € P,M(p) < W~ (p,1)); if
such a state exists, increase the initial guess for Mo(p) and repeat.

Note that, if the TPN is unbounded, then the number of iterations is unbounded and
the algorithm does not terminate (the ESCG and ZBMCG computations also do not
terminate). P-semiflow and complementary places are standard PN concepts, and we do
not recall them here. We only show how the net on the left part of Figure[Qlis modified to
obtain the net on the right part of the same figure. P-semiflow analysis reveals that place
P3 is unbounded and the complementary place P4 is inserted. Choosing My (P4) = 6
bounds also P3 to a maximum of 6 tokens. The check on the MCTA reveals that this
was a good choice, and we can safely use the MCTA built from the net on the right
part of Figure[0] rather than the TPN on the left part of the figure (the underlying PN
of which is unbounded), because they have the same behavior over reachable states.

5 The GREATSPN2TA Tool

In this section we present the tool GREATSPN2TA for the computation of the MCTA
(or MCTA®%) of a given TPN. The underlying PN is described with the tool
GREATSPN [[L1], which is a software package for the modeling, validation and per-
formance evaluation of distributed systems using models based on stochastic Petri nets.
The produced MCTA (or MCTA**) is described in the input format of KRONOS [12],
a model-checking tool for TA. In the following, we compare GREATSPN2TA to
ROMEO. The software ROMEO [9] permits the state space computation of TPN, on-
the-fly TCTL model-checking and the translation from TPN to TA with equivalent

228 D. D’ Aprile et al.

behavior. ROMEO incorporates two tools of interest in our context, namely GPN and
MERCUTIO. Both tools transform a given TPN to the UPPAAL or KRONOS input for-
mat: the tool GPN exploits the SCTA computation, whereas MERCUTIO is based on
the ZBMTA construction.

We ran MERCUTIO, GPN, and GREATSPN2TA (using also the variant
GREATSPN2TA® which implements the MCTACock construction), on a number
of different models. Our experiments were executed on a 1.60 GHz Pentium 4 PC
with 512 MB of RAM, running Linux. Table [] lists, for every model, the number
of locations and clocks of the TA, and the elapsed time to compute the TA. We
considered two classical PN models: the dining philosophers (with 4 philosophers,
Philo4), the slotted ring with 4 devices (SR4), and three models taken from the ROMEO
package: a producer-consumer with 6 producers and 7 consumers (P6C7), and a set
of parallel sequences (Oex15), which we have also modified so that each sequence
cycles (Oex15%¢). For Philo4 and Oex15%" a number of different timings of the
TPN were considered: in the Philo4 case, we have forced one of the four philoso-
phers to be 10, 100, or 1000 times slower during the thinking activity (so obtaining
the Timing jsi— 10, Timingjsne—100, and Timing jg,— 1000 Variants, respectively); in the
Oex159¢ case, the time intervals describing the different activities were considered
totally disjoint (Timingg;s;), partially overlapping (Timing oyeriapping)» Or having the same
latest firing times (Timingconsained—Lrr)- The results, shown in Table [Tl provide exam-
ples of the various trade-off that the four methods offer. Due to the different char-
acteristics of the four algorithms, we compare the tools by pairs: GREATSPN2TA
with GREATSPN2TA“ GpN with MERCUTIO, GPN with GREATSPN2TA and
MERCUTIO with GREATSPN2TA¢ck,

GREATSPN2TA and GREATSPN2TA*, GREATSPN2TA always produces
a greater number of locations and a smaller number of clocks than the
GREATSPN2TA% variant: the smaller number of clocks is nevertheless
paid for in terms of execution time, especially for models in which, in each
state, there is an high number of enabled transitions (indeed the execution of
GREATSPN2TA on P6C7 did not terminate even after 5 minutes). The greater
number of locations can be explained by recalling the discussion of Section .2l As
expected, execution times do not change when changing the timing of transitions.

GPN and MERCUTIO. As already observed, GPN optimizes clocks and MERCUTIO
optimizes locations: there is not a definitive winner in terms of execution times,
although they are both sensitive to timings (most notably in the Philo4 case).

GPN and GREATSPN2TA. For the examples considered, the two tools generate the
same number of clocks. In the P6C7 case the MCTA computation explodes while
computing clock similarity, due to the high number of transitions enabled in each
state. In all other cases, the execution time is smaller for GREATSPN2TA.

MERCUTIO and GREATSPN2TA, MERCUTIO assigns statically one clock per
transition and leaves to the TA tool (UPPAAL or KRONOS) the task of minimizing
the number of clocks, while GREATSPN2TA°% assigns a different clock
to each enabled transition: this explains the smaller number of clocks in the
GREATSPN2TA°* column. As expected, the number of locations is smaller in

From Time Petri Nets to Timed Automata: An Untimed Approach 229

Table 1. Experiments results for GPN, MERCUTIO, GREATSPN2TA, and GREATS PN2TAc/ock

Model GPN MERCUTIO GREATSPN2TA GREATSPN2TA /%
SR4 22907 loc 5136 loc 7327 loc 5136 loc
4 clocks 33 clocks 4 clocks 8 clocks
4.30s 3.86s 2.63s 2.08 s
Philo4 4406 loc 322 loc 1161 loc 322 loc
6 clocks 17 clocks 6 clocks 8 clocks
1.50 s 0.16 s 0.11s 0.07 s
Timing rsi—10 6.7s 6.2s 0.11s 0.07 s
Timing jsiv—100 >300s >300s 0.115s 0.07 s
Timing jsiw—1000 >300s >300s 0.115s 0.07 s
P6C7 11490 loc 449 loc n.a. 896 loc
3 clocks 21 clocks n.a. 13 clocks
3445 470 s >300s 1.245
Oex15 1048 loc 360 loc 625 loc 625 loc
4 clocks 17 clocks 4 clocks 4 clocks
0.36s 0.63 s 0.12 s 0.11s
Oex15¢¥cle 3510 loc 256 loc 369 loc 256 loc
4 clocks 17 clocks 4 clocks 4 clocks
3.10s 79s 0.07 s 0.06 s
Timinggisjoint 78s 3255 0.07 s 0.06 s
Timingoveriapping 4.7s 32.7s 0.07 s 0.06 s
Timingcontained—rr ~ 4.8's 259s 0.07 s 0.06 s

MERCUTIO (which is optimal in this respect), but its execution times can be much
worse, especially when changing transition timings.

6 Conclusions

In this paper we have presented a method to translate a TPN to a TA by exploiting
reachability of the underlying untimed PN of the TPN. This technique has a disadvan-
tage that the untimed PN can be unbounded, even if the TPN is bounded; to address
this issue, we have described an empirical method for bounding the PN using com-
plementary places, and then checking if this bound is too restrictive. The experimental
results show that the computation time used by our method is competitive for a number
of classes of system, and the produced TA generally offer a good compromise between
the number of locations and the number of clocks. In future work, we plan to address
methods for obtaining information about bounds on the number of tokens in places of
the TPN, which can then be used in our approach based on complementary places. We
also intend to implement a translation to UPPAAL TA (which requires a translation of
the MCTA, which has clock renaming, to an equivalent TA without renaming [7]), and
to consider the use of clock reduction, as implemented in model-checking tools for TA,
in the context of our technique.

References

1. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Information
and Computation, 104(1):2-34, 1993.

2. R. Alur and D. Dill. Automata-theoretic verification of real-time systems. Formal Methods
for Real-Time Computing, pages 55-82, 1996.

230

3.

4.

10.

11.

12.

13.

14.

15.

16.
17.

18.
19.

D. D’ Aprile et al.

R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183-235,
1994.

G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson, W. Yi, and M. Hendriks.
UPPAAL 4.0. In Proceedings of the 3rd International Conference on Quantitative Evaluation
of Systems (QEST 2006), pages 125-126. IEEE Computer Society Press, 2006.

. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using

time Petri nets. IEEE Transactions on Software Engineering, 17(3):259-273, Mar. 1991.

. B. Berthomieu and F. Vernadat. State class constructions for branching analysis of time Petri

nets. In Proceedings of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003), volume 2619 of LNCS, pages 442—
457. Springer, 2003.

. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theoretical

Computer Science, 321(2-3):291-345, 2004.

. F. Cassez and O. H. Roux. Structural translation from time Petri nets to timed automata.

Journal of Systems and Software, 79(10):1456-1468, 2006.

. G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool for analyzing time Petri

nets. In Proceedings of the 17th International Conference on Computer Aided Verification
(CAV 2005), volume 3576 of LNCS, pages 418-423. Springer, 2005.

G. Gardey, O. H. Roux, and O. F. Roux. State space computation and analysis of time Petri
nets. Theory and Practice of Logic Programming (TPLP). Special Issue on Specification
Analysis and Verification of Reactive Systems, 6(3):301-320, 2006.

GREATSPN web site. http://www.di.unito.it/~greatspn.

KRONOS web site. http://www-verimag.imag.fr/TEMPORISE/kronos/.

D. Lime and O. H. Roux. Model checking of time Petri nets using the state class timed
automaton. Journal of Discrete Events Dynamic Systems - Theory and Applications (DEDS),
16(2):179-205, 2006.

M. Menasche and B. Berthomieu. Time Petri nets for analyzing and verifying time dependent
protocols. Protocol Specification, Testing and Verification 111, pages 161-172, 1983.

P. M. Merlin and D. J. Farber. Recoverability of communication protocols: Implications of a
theoretical study. IEEE Trans. Comm., 24(9):1036-1043, Sept. 1976.

ROMEO web site. http://romeo.rts-software.org/.

J. Toussaint, F. Simonot-Lion, and J.-P. Thomesse. Time constraints verification method
based on time Petri nets. In Proceedings of the 6th IEEE Computer Society Workshop on Fu-
ture Trends of Distributed Computing Systems (FTDCS’97), pages 262-267. IEEE Computer
Society Press, 1997.

UPPAAL web site. http://www.uppaal.com.

S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Soft-
ware Tools for Technology Transfer, 1(1/2):123-133, 1997.

Complexity in Simplicity: Flexible Agent-Based
State Space Exploration

Jacob I. Rasmussen, Gerd Behrmann, and Kim G. Larsen

Department of Computer Science, Aalborg University, Denmark
{illum,behrmann,kgl}@cs.aau.dk

Abstract. In this paper, we describe a new flexible framework for state
space exploration based on cooperating agents. The idea is to let various
agents with different search patterns explore the state space individu-
ally and communicate information about fruitful subpaths of the search
tree to each other. That way very complex global search behavior is
achieved with very simple local behavior. As an example agent behavior,
we propose a novel anytime randomized search strategy called frustration
search. The effectiveness of the framework is illustrated in the setting of
priced timed automata on a number of case studies.

1 Introduction

Efficient exploration of large state spaces given as graphs is highly relevant in a
number of areas, e.g. verification, model checking, planning, scheduling, etc.

For many applications we are interested in placing guarantees on systems.
For verification this could be guaranteeing deadlock freedom or guaranteeing
optimality in scheduling and planning. Such guarantees often require exhaustive
search of the state space and algorithms for doing this are expensive in terms
of time and memory usage. The high memory usage is required to keep track
of all states that have been explored. Algorithms in this category often have
breadth-first characteristics, such as e.g. A*, [12].

However, covering the entire state space is sometimes unnecessary or even
infeasible. Many real application domains prefer algorithms to find solutions
fast and then gradually improve the solution instead of guaranteeing optimality.
Algorithms with such characteristics are called anytime algorithms and include
genetic algorithms, [14], simulated annealing, [16], beam-stack search (a complete
variant of beam search), [20], tabu search, [9/I0], and others.

Other algorithms rely on heuristic information for states such as estimated
distance to the goal. Such heuristic algorithms include beam search and best-first
search (e.g. A*). Alternately, randomized or stochastic algorithms like Monte
Carlo methods can be used when optimality does not have to be guaranteed.
For a good introduction to many type of algorithms for optimization purposes,
we refer the reader to [I5]. For an interesting approach to LTL model checking
using Monte Carlo methods, we refer the reader to [11].

When searching for solutions to optimization problems, the famous
“no-free-lunch” theorem, [19], states that all optimization algorithms perform

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 231{244, 2007.
© Springer-Verlag Berlin Heidelberg 2007

232 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

indistinguishably when averaged over all optimization problems. The theorem
implies the importance of tailoring solutions to different problems as there is no
single best algorithm for all problems. However, there is also the important im-
plication that general purpose exploration engines cannot rely on a single search
strategy, but need to offer a wide variety algorithms.

One way to let an exploration engine use multiple search algorithms is to
run the search algorithms as co-routines in simulated parallelism. This can be a
very efficient approach to searching because of the wide range of strong search
algorithms that have been published. However, a weak point with this approach
is that no algorithm utilizes the strength of the other algorithms, e.g. a depth-
first approach could be searching a fruitful part of the state space, but might
not find a good solution in reasonable time due to the search strategy, whereas
a beam search performed in the same part of the state space might find good
solutions immediately. In turn, beam search might never get to explore that part
of the state space due to poor heuristics and/or very expensive transitions to
reach that part of the state space.

Alternatively, if the algorithms are able to detect fruitful part of the state
space and employ other algorithms to assist in the exploration, very complex
search behaviors can be achieved using just simple and well-known algorithms.

This is exactly the approach we advocate in this paper. We propose an agent
framework where individual agents use basic search algorithms (e.g. (random)
depth-first search, beam search) and execute as co-routines using a given ex-
ploration engine. The agents are connected to a pool of tasks where each agent
can put new tasks and get tasks. Tasks in this setting are sub-paths of the state
space indicating interesting areas to search. This way an agent with a fixed
search strategy that detects a potentially interesting part of the state space can
put a number of tasks to the task pool and let other agents with different search
strategies pick the tasks and aid in the search of the given part of the state
space.

We apply our framework in the setting of priced timed automata (PTA),
[1703], an extension of timed automata, [2], that address the optimal reachability
problem. PTA have proven useful for a wide range of different search problems
such as model checking, [7], and scheduling, [TI5IT8]. The diversity of applications
and generality of the modelling language of PTA suggests that no single search
algorithm is superior and, thus, could benefit from an agent-based approach to
search. The framework has been applied to a number of case studies from PTA
with promising results.

The rest of the paper is structured as follows: Section 2] describes the agent
framework and the constituents hereof. Section [B] proposes a novel search al-
gorithm termed frustration search and describes its incorporation in the agent
framework. In Section @ we describe the instantiation of our framework for
priced timed automata and its application to a number of case studies. We fi-
nally conclude in Section [{ and indicate directions of future work.

1 E.g., estimated cost of finding a solution is lower than the current best solution, or
parts of the search space where deadlocks a rarely encountered.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 233
2 Agent Framework

In this section, we propose a highly flexible agent-based framework for state
space exploration. The framework has been implemented in the setting of priced
timed automata, which is evaluated in Section [l

An overview of the framework is depicted in Fig.[Il Subsequently, we describe
the three components of our framework - exploration engine, agents and task store.

Exploration Engine. The framework we propose is constructed to be indepen-
dent of the type of state space that is being explored. We require a front-end
to the state space in terms of an exploration engine that can take states and
return their successors plus meta information such as traditional heuristics (e.g.
remaining costs) if the state space supports it. We assume that the given explo-
ration engine offers a single interface function getSuccessors(s) that, as input,
takes a state and, as output, returns a collection of successors.

Task Store. The task store is a pool of tasks available to the agents. The task
store offers an interface to access the pool of tasks by means of putting (adding)
new tasks to the store and getting (removing) existing tasks from the store. A
task is an entry into the state space either in terms of a sub-path from the initial
state or simply a reachable state. The task store is considered to have an infinite
number of the initial state.

There are several choices involved in managing the store with respect to states
that are added and removed. Different design considerations include:

— When agents perform a get call, tasks can be removed in e.g. FIFO, LIFO,
most promising first, random, or some other order.

— The initial state can be returned only when there are no other tasks in the
store or by some probability.

— The task store can be implemented with a fixed size where the oldest tasks
are removed when the size limit is reached. This makes sense when searching
for optimality since old tasks might relate to parts of the search space that
are no longer promising as new better solutions might have been found since
the tasks was added to the store.

Agents. The framework defines a fixed number of agents which are co-routines
running in simulated parallel interacting with the exploration engine and, in-
directly, with each other through the task store. The agents are simply search
algorithms employing some search strategy, e.g. variants of depth-first search,
beam search, etc. The configuration of agents can be either static (the collection
of agents remains unchanged throughout the search) or dynamic (agents might
be replaced by other types of agents depending on how they perform). Each
agent A; has a personal configuration C; necessary to perform the given search
strategy. The configuration holds information about which state to explore next
and possibly a list of states waiting to be explored.

There are two aspects to bounding the overall memory consumption of the
agent framework. First, each agent should have a reasonably bounded memory
consumption such as some constant times the largest depth of the state space.

234 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

Task Store

put(s) get O
put (sl) g;at O

Aq A An

o & a

getSuccessor(s)

Exploration
Engine

put (sl) gft O

Fig. 1. The three part agent framework consisting of an exploration engine, a set of
agents and a task store

This is very applicable for a large number of search algorithms such a different
variants of depth-first search (e.g. random, best) and beam search.

Second, there can be no central store of states that have already been ex-
plored. This is obviously a trade-off as agents in the framework might explore
states that have already been explored by itself or other agent:E. However, to-
gether with the memory limit requirement of the agents, the main benefit is that
the search framework can search indefinitely, constantly improving solutions for
optimization problems.

Obviously, the behavior of a given agent setup can be described in terms of
a single anytime search algorithm, however, that behavior would be inherently
complex to describe and very inflexible if changes needed to be made. On the
other hand, the agent framework is highly flexible to changes and agents can be
added or removed to fit a certain application area.

Furthermore, the agent framework is easily distributed to a multiple processor
architecture (in either a cluster, grid, or single PC) by having a number of agents
running on each processor sharing a single or multiple task stores.

Note that the agent framework generalizes all of search algorithms, as any one
algorithm can be implemented in a framework using a single agent.

3 Frustration Search
In this section we introduce a novel search strategy termed frustration search.
Frustration search is an incomplete, randomized anytime algorithm build around

2 Obviously, for cycle detection, an agent will not explore state already found on its
current search path.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 235

random depth-first search and will be discussed in detail and analyzed for time
and memory usage. Furthermore, incorporation of the algorithm into the agent
framework will be discussed.

Prior to describing the frustration search algorithm, we need to establish some
notation to be used in this and the following section.

Preliminaries. We consider state spaces given as a weighted, potentially cyclic,
digraph (V, so, G, E, Cost), where V is a finite set of vertices, so the root vertex,
G C V the set of goal vertices, E C V x V the set of directed edges, and
Cost : E — IN a weight assignment to edges. As a shorthand notation, we write
s — &' to denote (s,s’) € E. The set of all vertices reachable from a vertex s by
means of a single transition is denoted by Succ(s), i.e.,

Succ(s) ={s' | s — §'}.
A path in a search space (V, sg, G, E, Cost) is a sequence of states:
0 = 81,82, ..., 8,

such that s; = sp and for 1 < i < n, s; — s;+1. If s; € V appears in o, we
write s; € o; otherwise s; ¢ o. tail(o) and head(o) denote the first (leftmost)
and last (rightmost) vertex in a path, respectively. The empty path is denoted
by €. The binary operator ’-’ denotes concatenation of paths. I.e., for two paths
o1 = 8,...8; and 02 = S, ..., 51, the concatenation oy - o2 is given by:

0102 = Sjy.eey SjySky vy Sl

and is only valid when (s, s;) € E. Furthermore, for any path o, c-e = €-0 = 0.
The cost of the path o is the sum of costs of the edges, i.e.,

n—1
Cost(o) = Z Cost(s;, Si+1)-
i=1

A path ¢ = s1,...,8, is a solution if s; = sp and s, € G. The optimization
problem associated with a state space is to find the solution with minimal cost.

Some heuristic search algorithms assume for every state an under-approximated
cost of reaching the goal. We define such a heuristic as a function rem : V. — IN
satisfying,

VseV .Vo=s,..s .5 €G = rem(s) < Cost(o). (1)

In other words, rem is a valid admissible heuristic. Having no such a priori
information of the state space corresponds to rem(s) = 0 for all states s € V.

Now, we progress to describing the frustration search algorithm that is de-
picted in Algorithm [Il Frustration search explores different areas of the state
space in a randomized fashion identically to random depth-first search, however,
the extent to which a given part of the state space is explored depends on the

236 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

“attractiveness” of the given part. Unattractive parts of the state space are ar-
eas with many deadlocks or states that have rem values that cannot improve the
current best solution.

Intuitively, frustration search explores the state space while keeping track of
its own frustration level. The frustration level increases when encountering dead-
locked states or states that can only reach the goal with a cost much higher than
current best solution. The frustration level decreases when finding goals with
costs close to or better than the current best solution. Whenever the frustration
level exceeds a given threshold the current part of the search space is discarded
and another part is explored. How much the frustration level decreases depends
on how much of the path to the current state is maintained.

The formal structure of frustration search is given in Algorithm [I, which we
describe in detail below.

Lines 1-4 initialize the algorithm stating that the best found cost is infinite,
the best path is not found, the frustration level is zero (empty path), and the
waiting list contains only the path consisting of the initial state. The main (while)
loop of the algorithm terminates when the WAITING stack is empty.

At each iteration, a path is selected from WAITING (line 6). How we proceed
depends on whether the state at the head of the path is a goal state or not. In
case it is, the path can fall in one of three categories compared to the current
best solution: Better than, reasonably close to (say, within 10 percent), or far
from (say, by more than 10 percent). In the former case, we update the current
best solution to the current path, update the best cost and reset the frustration
level to zero. Resetting the frustration level guarantees that the current part of
the search space is searched more thoroughly. In the middle case, the frustration
level is decreased slightly to search the current part of the state space more
thoroughly. In the latter case, the frustration level is increased.

In case the head of the path is not a goal state, we need to compute the
successors of the state at the head of the path. At line 18, we select only those
successors that are neither on the path already nor unable to reach the goal
within an acceptable margin of the current best solution. If the computed set
of successors is empty, we increase the frustion level accordingly. Otherwise, we
add the successors to the WAITING list in random order.

Lines 27 through 31 are executed regardsless of whether the head of the cur-
rent path is a goal state or not. Here, the frustration level is tested against a
predefined frustration threshold. If the threshold has not been exceeded, we do
nothing. Otherwise, we compute a random number between zero and the size of
WAITING plus one. This value determines the number of states that should be
removed from the top of the WAITING list (line 30). Furthermore, the frustration
level is decreased proportionally to the number of states that has been removed
from WAITING.

Finally, when the WAITING list is empty the algorithm returns to line 4 and
reinserts the initial state into WAITING to re-search the state space. The ran-
domization of the algorithm guarantees a diminishingly small chance of two runs
being identical.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 237

Algorithm 1. Frustration search
proc FrustSearch =
1: CoST «— ©

2: BEST « ¢

3: FRUST « 0

4: WAITING « {e- s0}

5: while WAITING # () do

6: o < pop(WAITING)

7: if head(o) € G then

8: if Cost(c) < CoST then

9: CosT « Cost(o)

10: BEST «— 0o

11: FrusT «+ 0

12: else if Cost(c) < CosTx1.10 then
13: FRUST+ dec(FRUST)

14: else

15: FRrRUST«+ inc(FRUST)

16: end if

17: else

18: Succ « {s’ | s’ € Succ(head(0)), s" ¢ o, Cost(o - s") + rem(s’) < CosTx1.10}
19: if Succ #) then
20: for all s’ € Succ do
21: push(WAITING, o - s")
22: end for
23: else
24: FRUST < Inc(FRUST)
25: end if
26: end if
27: if FrRuUST > MAXFRUST then
28: RAND « (rand mod |WAITING|+1)
29: FRUST < FRUST X "\I‘X‘I\T\I,ZI("T'IQ"“”D
30: pop(WAITING, RAND)
31: endif
32: end while
33: goto 4

MAXFRUST and how much the frustration level is incremented or decremented
can be adjusted to specific applications, e.g., how often are deadlocked states
expected or how often should the algorithm start over etc.

Since frustration search restarts after each termination, it only makes sense to
talk about time and memory usage for each iteration (the while-loop). The worst
case time behavior of frustration search ocurs when no states are ever removed
from the WAITING list due to frustration. In this case, the behavior is identi-
cal to random depth-first search. Thus, the worst-case execution time is O(|V|)
as with random depth-first search. The memory usage depends on the size of
the WAITING list and will - like depth-first search - never exceed O(MaxDepth -

238 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

MaxOQOut), where MaxDepth is the maximum depth of any path of the state
spaceﬁ and MaxOut is the maximum number of successors of any state.

Variants of Frustration Search. The behavior of the frustration search al-
gorithm is easily changed into different variants by changing the order in which
states are added to the WAITING list. Using either the rem heuristic or other user
defined guides, frustration search can be tailored to different kinds of problems.
E.g., in Section M, we use a variant of frustration search that sorts the successors
according to the current cost plus the remaining estimate. That way, the states
are searched in a best first manner with randomization as a tiebreaker. Variants
of this type have no impact on the worst-case time or memory usage.

Relating to the Agent Framework. To implement frustration search in the
agent framework defined in Section [2| the state inserted into the WAITING list
can be taken from the task store instead of the initial state. Furthermore, tasks
can be added to the task store whenever a promising goal location is found.
Subpaths of this solution can be added to the task store for further investigation
by other agents.

4 Framework Instantiation

In this section, we discuss ways of utilizing the agent-based architecture in
scheduling using priced timed automata. We explore only static agent setups
and leave dynamic setups as future work.

Timed Automata. Timed automata were first introduced by Alur and Dill
in [2] as a model for describing reactive real-time systems. The benefit of using
timed automata over the more expressive hybrid automata is that the model
checking problem for timed automata - unlike for hybrid automata - is decidable.
Decidability is achieved because the infinite state space for timed automata has
a finite quotient. The finite quotient allows algorithms to reason about sets of
states (a symbolic state) with equivalent behavior.

Because timed automata analysis requires representing sets of states, a sym-
bolic state of most timed automata exploration engines has the form (I, Z) where
[is discrete state information and Z is a convex polyhedron representing dense
timing information. For priced timed automata (PTA), the state representation
is similar except that we associate an affine cost function with the polyhedron.
In minimum-cost reachability analysis we need to compute the minimum of the
cost function using linear programming.

A symbolic A* algorithm for minimum-cost reachability of priced timed au-
tomata has been implemented as an extension to the symbolic state space ex-
ploration engine of the real-time verification tool UPPAAL. The result is the
optimization tool UPPAAL CORA, which has been successfully applied to a num-
ber of benchmarks and industrial scheduling problems, [6]. This A* algorithm is
depicted in Algorithm

3 A path ends whenever it encounters a state already on the path or has no successors.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 239

Algorithm 2. Reachability algorithms used by UpPAAL CORA

1: WAITING = {¢-so}

2: PASSED = {)

3: CoST = o0

4: while WAITING # () do

5: o <« pop(WAITING)

6: if head(o) € G then

7 if Cost (o) < CoOST then

8: Cost = Cost (o)

9: end if

10: else

11: Succ « {s’ | s’ € Succ(head(0)),s’ ¢ PASSED, s’ ¢ WAITING, Cost (o - s’)
+rem(s’) < Cost}

12: for all s € Succ do

13: push(WAITING, o - 5)

14: sort(MinCostRem, WAITING)

15: end for

16: add(PASSED, o)

17: end if

18: end while
19: return CosT

The algorithm is a classical A* search algorithm with a WAITING list sorted
according to the cost plus remaining estimate for each state. The algorithm
further keeps a PASSED list of states that have been explored. The successor
computation on line 11 involves manipulation of symbolic states that are up to
cubic in the number of variables used in Z. Furthermore, inclusion checking and
computation of symbolic state costs involve solving linear programs.

Given the computational complexity of manipulating symbolic states, most
of the work done for optimizations of (priced) timed automata involves finding
better representations of Z assuming that the algorithm is fixed. In this sec-
tion, we focus solely on the algorithm to explore whether an incomplete search
framework like that agent framework is competitive to existing methods.

4.1 Applications

The implementation of the agent framework applied in this section uses the
following search agents, referred to as 'Mix’:

— Depth-first search (DFS): Deterministic search where states are added to the
waiting list in the order provided by the exploration engine.

— Best depth-first search (BDFS): A variant of DFS that sorts the successors
according to their expected cost (current cost plus remaining estimate). Ran-
domization is used for tie-breaking states with equal cost.

— Random depth-first search (RDFS): Successors are shuffled before adding
them to the waiting list.

— Beam search (BS): Classical beam search with a fixed beam width of 100.

240 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

— Frustration search (Frust): Successors are shuffled before added to the wait-
ing list. Frustration decrement is set to 0.5 and increments to 1 with a
MAXFRUST set to 1000.

— Best frustration search (BestFrust): Like Frust, but successors are sorted
according to their cost plus remaining estimate.

The framework uses one agent of every type and creates ten copies of every
job in the task store to increase the chance that every agent has a chance to
explore every job.

Lacquer Scheduling. This case studies has been provided by Axxorf] - a
German company that provides scheduling software for the lacquer production
industry. The scheduling problem involves fulfilling a number of orders (with
deadlines) for lacquer of different colors. The lacquer production process requires
the use of a number of different machines, which have to be cleaned in-between
usage for lacquer of different colors. Each type of lacquer has a special recipe
describing which machines to use. Costs are incurred during machine use, clean-
ing and storage (if recipes are fulfilled before the deadline). The Axxom case has
been studied for schedulability with timed automata in [5] and for optimization
in [I3]. For a thorough introduction to the Axxom case study, we refer the reader
to either of the two papers.

The lacquer production scheduling problem is of a size that inhibits explo-
ration of the entire state space, and schedules used rely on suboptimal solutions.
Axxom uses custom-made software for scheduling, but [I3] reports that the solu-
tion found with UPPAAL CORA are comparable to those of the custom scheduling
software. Thus, every advancement of the solutions found by UrpPAAL CORA only
make the PTA approach more competitive.

The purpose of the following experiments is twofold: First, to compare co-
operating agents in a scheduling framework where guaranteeing optimality is
unrealistic to other single search algorithm methods. Second, to determine how
well the heuristic used in frustration search for skipping parts of the state space
is to an uninformed approach. The algorithm used in [I3] is ideal for such a com-
parison as the algorithm is a best depth-first algorithm with (random) restarting
(BDFS-RR) based on a stochastic choice. We will test two agent setups with a
single agent using the default variant of frustration search and a single agent
using the best frustration search approach. The test setup we have used is the
following:

— Hardware: 3.2GHz PC with 4GB RAM running Linux/Debian 3.1.

— Models: We have chosen the two models used in [I3]. Both models have 29
orders, but the first model (6) has no costs associate with storage of lacquer
whereas the second model (7) has. Model 6 has two variants depending on
how machine availability is modelled. Model 6a models the availability as a
fraction of the overall times where model 6b models availability according

4 The case study was provided as a test bed for algorithms in the European Community
Project IST-2001-35304 AMETIST.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 241

to the work shifts provided by Axxom. The models use the guiding rem
estimates defined in [I3].

— Instances: For each variant of model 6, we vary the number of orders that
can be active simultaneously. This heuristic was used in [I3] where the limit
was set to five orders, but we include 15 and 29 as well. Model 7 is the most
accurate model of the case study, and we use no variant hereof even though
the model is reported to be very difficult in [I3].

— Algorithms: We use four different algorithms in our test setup: BDFS-RR,
Frust, BestFrust, and Mix.

— Duration: For model 6, we run experiments for 10 minutes each in accordance
with the tests of [I3]. In that paper, problems were reported for executing
model 7 for longer than 10 seconds, however, we have not experienced such
problems and have performed test for 10 minutes and 2 minutes to investigate
how fast solutions are found, and how much they are improved over time.

— Repetition: Each test is executed 10 times for every algorithm.

For the experiments with model 6(a and b) in Table [Il Mix is clearly the
best algorithm for finding schedules, it is only outperformed once by BestFrust
on model 6b with 15 active orders. For all other cases Mix is superior both
for the best solution, worst solution and average solution. BestFrust is clearly
better than BDFS-RR for all instances supporting the idea of using a more
informed heuristics for skipping parts of the state space. For all instances, but
one, BestFrust also outperforms Frust showing that some guiding is important
for model 6. This is further supported by the fact that Frust only outperforms
BDFS-RR on two instances.

Even though Mix is the superior approach, the experiments suggests that the
benefits of having a mix of agents to a single BestFrust agent are negligible, but
the following experiments show that this is not the case.

Table 1. Results for two versions of Axxom model 6 from [13] showing the costs of
the best solutions found within 10 minutes of search

Axxom model 6a

Agent Mix BestFrust Frust BDFS-RR
Active orders: 29 15 5 29 15 5 29 15 5 29 15 5
Best (106) 2.08 1.98 1.73 2.28 2.36 1.81 3.16 2.10 2.46 - 2.61 2.03

Worst, (10°) 4.91 2.59 2.07 6.09 2.69 2.12 11.77 2.47 6.02 - 3.89 11.1
Average (10°) 2.89 2.18 1.90 3.76 2.54 1.97 8.61 2.26 4.59 - 2.91 4.33

Axxom model 6b

Agent Mix BestFrust Frust BDFS-RR
Active orders: 29 15 5 29 15 5 29 15 5 29 15 5
Best (10°) 6.97 7.03 6.46 7.25 6.87 6.98 7.61 8.02 7.52 7.18 7.44 7.21

Worst (10°) 7.88 8.56 7.82 7.75 7.73 7.59 891 8.85 8.82 832 855 9.8
Average (10°) 7.41 7.58 7.34 7.50 7.37 7.46 8.33 8.31 8.11 7.86 7.93 8.2

242 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

Table 2. Results for Axxom model 7 from [I3] showing the best costs after 10 and 2
minutes of search

Axxom model 7

Agent Setup Mix BestFrust Frust BDFS-RR
Time 10min 2min 10min 2min 10min 2min 10min 2min
Best (10°) 2.09 2.11 10.21 11.6 4.21 244 69.85 64.87
Worst (106) 6.32 14.93 17.50 25.21 10.01 15.37 87.83 94.49

Average (10°) 3.12 6.55 13.36 18.77 8.15 8.60 79.60 88.10
Found solution 100% 100% 100% 100% 100% 100% 50% 30%

The experiments for model 7 in Table 2 show that the algorithm used in [I3]
was unable to find even a single solution for a significant fraction of the instances,
whereas all agent setups found solution for all experiments. The solutions BDFS-
RR actually found are significantly inferior to any solution found by the agent
setup. For this model, Frust clearly outperforms BestFrust for both best, worst
and average solutions. However, neither algorithm alone is competitive to the
cooperating agent framework, which consequently finds the best solutions.

All of the experiments above support that using the agent framework for
search has significant benefits for general purpose search. Furthermore, variying
the search intensity in different areas of the search space with frustration search
seems very fruitful.

Aircraft Landing Problem. The aircraft landing problem involves scheduling
landing times for a number of aircraft onto a fixed number of runways. Each
aircraft has an earliest, target, and latest landing time given by physical con-
straints on aircraft speed and fuel capacity. Costs are incurred for each plane
deviating from the target landing time. For more information see [4T7/g].

The aircraft landing problem was first discussed in [4] where a mixed integer
linear programming solution was given. In [I7], the problem was solved using
priced timed automata and the results obtained were highly competitive to those
of [4]. The case was reused in [I8] with optimizations of the algorithm used for
minimum-cost reachability for PTA, and with the optimized algorithm PTA were
faster than [4] at solving the case for almost every instance.

The purpose of the following experiment is to determine how efficient the
agent framework (and frustration search) is at finding optimal schedules in state
spaces that are small enough to be searched exhaustively. And further, how well
the performance competes with a powerful complete search strategy, A*. The
test setup we have used is the following:

— Hardware: 3.2GHz PC with 4GB RAM running Linux/Debian 3.1.

— Models: We have chosen the seven models used in [4I7I8]. The model uses
no form of guiding with rem estimates.

— Instances: The instances for the models involves varying the number of run-
ways until all planes can land with a total cost overhead of zero.

— Algorithms: We use mix of agents described in the beginning of this section
together with the default A* search algorithm used in UPPAAL CORA.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 243

Table 3. Aircraft landing problem. *: 50% of the tests completed within the time limit
of 20 minutes, and the average is computed among these.

Instance
Runways Algorithm

Cora 0.04s 0.17s 0.11s 0.50s 1.10s 0.05s 0.07s
Best 0.16s 2.24s 3.77s 6.01s 4.77s 0.05s 6.68s

1 2 3 4 5 6 7

1 Agents Worst 0.22s 3.15s 4.75s >1200s 8.97s 0.06s 7.70s
Average 0.18s 2.64s 4.34s 58.01s* 5.88s 0.06s 7.34s
Cora 0.15s 0.29s 0.25s 3.56s 4.98s 0.14s 0.35s
9 Best 0.09s 0.28s 5.65s 6.14s 9.69s 2.96s 2.25s
Agents Worst 0.59s 4.23s 6.12s 7.23s 162.37s 13.87s 13.19s
Average 0.19s 3.00s 5.83s 6.90s 37.33s 8.86s 4.85s
Cora 0.16s 0.22s 0.33s 91.43s 71.95s 0.15s
3 Best 0.67s 1.66s 7.01s 6.71s 7.12s 0.06s
Agents Worst 3.06s 5.97s 7.70s 19.94s 18.43s 0.07s
Average 1.94s 5.27s 7.45s 9.44s 9.76s 0.07s
Cora 7.60s 3.14s
4 Best 9.13s 8.48s
Agents Worst 26.48s 20.93s
Average 12.59s 11.79s

— Duration: A maximum of 20 minutes were allowed for each instance.
— Repetition: The agent setup was executed 10 times and the UpPPAAL CORA
algorithm only once as it is deterministic.

The results in Table[3 clearly indicate that for most instances the A* algorithm
outperforms the agent framework. However, it is interesting to note that for the
most difficult instances - 4 and 5 - the A* algorithm shows exponential growth
in running time until all aircraft can be scheduled with zero cost (4 runways).
However, the agent framework does not have this issue, as there appears to be
no correlation between the number of runways and the time to find the optimal
solution. On instances 4 and 5 with 3 runways, the agent framework clearly
outperforms the A* algorithm in finding the optimal solution. On instance 5
with 2 runways, the agent framework performs significantly worse on average,
but reasonably for the best case. Only for one instance - 4 with 1 runway - was
the agent framework unable to find the optimal solution with the time limit. The
optimum was found for 50 percent of the executions, however, all executions -
even the ones that never found the optimum within the time limit - found a
solution deviating only 1 percent from the optimal within 6 seconds!

Another interesting observation of the agent framework is that for the major-
ity (~80%) of the executions, the optimum was found by agents searching sub-
paths created by other agents that found reasonable solutions. In many cases,
the beam search agent was able to find a close to optimal solution, but did not
find the optimum, and some frustration agent found the optimal solution using

244 J.I. Rasmussen, G. Behrmann, and K.G. Larsen

subpaths of the suboptimal solution. This supports the use of interacting agents
to achieve complex global search behavior through simple local behavior.

5 Conclusions and Future Work

In this paper, we have investigated using sets of cooperating agents to explore
large state spaces. We have tested the agent framework against complete and
incomplete single algorithm methods. The results show that for state spaces that
are too large to be searched exhaustively, the agent framework consistently finds
good solutions that are superior to any single algorithm tested. For smaller search
spaces where exhaustive search is possible, the A* algorithm performs better,
however, unlike A*, the agent framework does not perform exponentially worse
as the state space grows. For the most difficult problems, the agent framework
performed significantly better than A*.

We also introduced frustration search as an anytime algorithm for large state
spaces. The heuristic to skip parts of the state space based on frustration was
shown to be superior to an uninformed stochastic heuristic. Furthermore, for
the Axxom case study, frustration search alone proved competitive to the agent
framework for a number of instances. Thus, frustration search seems a promising
algorithm for general purpose search when exhaustive search is infeasible.

As future work, we need to explore the agent setup for a larger number of
cases and compare to other frameworks for general purpose search. Furthermore,
a distributed version of the agent framework needs to be implemented to take
advantage of multi-processor architectures. Also, we need to investigate a more
dynamic strategy for assigning agents to search problem, e.g., by adjusting the
number of agents of different kinds by keeping track of how well the agents
perform in the given search space.

References

1. Yasmina Abdeddaim, Abdelkarim Kerbaa, and Oded Maler. Task graph scheduling
using timed automata. Proc. of the International Parallel and Distributed Process-
ing Symposium (IPDPS), 2003.

2. R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. of Int.
Colloquium on Algorithms, Languages and Programming, volume 443 of Lectur
Notes in Computer Science, pages 322-335. Springer-Verlag, July 1990.

3. Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. In Proc. of Hybrid Systems: Computation and Control, volume
2034 of Lecture Notes in Computer Science, pages 49—-62. Springer-Verlag, 2001.

4. J. E. Beasley, M. Krishnamoorthy, Y. M. Sharaiha, and D. Abramson. Scheduling
aircraft landings - the static case. Transportation Science, 34(2):pp. 180-197, 2000.

5. G. Behrmann, E. Brinksma, M. Hendriks, and A. Mader. Scheduling lacquer pro-
duction by reachability analysis — a case study. In Workshop on Parallel and
Distributed Real-Time Systems 2005, pages 140—. IEEE Computer Society, 2005.

6. Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling
using priced timed automata. SIGMETRICS Perform. Eval. Rev., 32(4):34-40,
2005.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Complexity in Simplicity: Flexible Agent-Based State Space Exploration 245

. Thomas Brihaye, Véronique Bruyere, and Jean-Frangois Raskin. Model-checking

weighted timed automata. In Proc. of Formal Modelling and Analysis of Timed Sys-
tems, volume 3253 of Lecture Notes in Computer Science, pages 277—292. Springer-
Verlag, 2004.

. Ansgar Fehnker. Citius, Vilius, Melius - Guiding and Cost-Optimality in Model

Checking of Timed and Hybrid Systems. IPA Dissertation Series, University of
Nijmegen, 2002.

. Fred Glover. Tabu search-part I. ORSA Jour. on Computing, 1(3):190-206, 1989.
10.
11.

Fred Glover. Tabu search-part II. ORSA Jour. on Computing, 2(1):4-32, 1990.
R. Grosu and S. A. Smolka. Monte carlo model checking. In Proc. of Tools and Al-
gorithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 271-286. Springer-Verlag, 2005.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968.

Martijn Hendriks. Model Checking Timed Automata - Techniques and Applications.
TPA Dissertation Series, University of Nijmegen, 2006.

John H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

Juraj Hromkovic and Waldyr M. Oliva. Algorithmics for Hard Problems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2002.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 18 May 1983, 220(4598):671-680, 1983.

Kim Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul
Pettersson, and Judi Romijn. As cheap as possible: Efficient cost-optimal reacha-
bility for priced timed automata. In Proc. of Computer Aided Verification, volume
2102 of Lecture Notes in Computer Science, pages 493+. Springer-Verlag, 2001.
J. Rasmussen, K. Larsen, and K. Subramani. Resource-optimal scheduling using
priced timed automata. In Proc. of Tools and Algorithms for the Construction and
Analysis of Systems, volume 2988 of Lecture Notes in Computer Science, pages
pages 220-235. Springer Verlag, 2004.

David H. Wolpert and William G. Macready. No free lunch theorems for search.
Technical Report SFI-TR-~95-02-010, Santa Fe Institute, Santa Fe, NM, 1995.
Rong Zhou and Eric A. Hansen. Beam-stack search: Integrating backtracking with
beam search. In Proc. of International Conference on Automated Planning and
Scheduling, pages 90-98. AAAT, 2005.

On Sampling Abstraction of Continuous Time
Logic with Durations

Paritosh K. Pandya!*, Shankara Narayanan Krishna?, and Kuntal Loya?

! Tata Institute of Fundamental Research, India
pandya@tifr.res.in
2 Indian Institute of Technology, Bombay, India
{krishnas,kloya}@cse.iitb.ac.in

Abstract. Duration Calculus (DC) is a real-time logic with measure-
ment of duration of propositions in observation intervals. It is a highly
expressive logic with continuous time behaviours (also called signals) as
its models. Validity checking of DC' is undecidable. We propose a method
for validity checking of Duration Calculus by reduction to a sampled
time version of this logic called Well Sampled Interval Duration Logic
(WSIDL). This reduction relies on representing a continuous time be-
haviour by a well-sampled behaviour with 1-oversampling. We provide
weak and strong reductions (abstractions) of logic DC' to logic WSIDL
which respectively preserve the validity and the counter models. By com-
bining these reductions with previous work on deciding IDL, we have
implemented a tool for validity checking of Duration Calculus. This pro-
vides a partial but practical method for validity checking of Duration
Calculus. We present some preliminary experimental results to measure
the success of this approach.

1 Introduction

Timed behaviours capture how the system state evolves with time. Temporal log-
ics specify properties of such behaviours. Real-time logics deal with quantitative
timing properties of timed behaviours.

Timed logics can make use of various notions of time: continuous, sampled
(with precise clocks) or discrete. Continuous time, where observable propositions
are boolean functions of real-valued time (also called signals), corresponds most
naturally to our intuitive notion of timed behaviour. Discrete time, where the set
of time points is natural numbered can be appropriate when describing clocked
systems such as synchronous circuits. There are other intermediate notions such
as timed words [I] which take a sampled view of timed behaviour. The behaviour
is given as a sequence of states where each state has a real-valued time stamp.

Real-time logics can be interpreted over these various notions of time and
their properties such as expressiveness and decidability also vary accordingly.
For example, the well known Metric Temporal Logic (MTL) has been shown

* This work was partially supported by General Motors India Science Lab sponsored
project “Advanced Research on Formal Analysis of Hybrid Systems”.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 246-[Z60] 2007.
© Springer-Verlag Berlin Heidelberg 2007

On Sampling Abstraction of Continuous Time Logic with Durations 247

to be undecidable for continuous time where as it is decidable for sampled time
(for finite behaviours) [II]. Unfortunately, using notions such as sampled time
can also lead to counter intuitive behaviour. For example, the Duration Calculus
formula ¢ = 3 A [[P] states that P holds invariantly for 3 time units. (This can
be written in MTL as O<3P.) The DC formula (¢ =1A[[P]) " (£ =2A[[P])
states that P holds invariantly for 1 time unit and this followed by P holding
invariantly for 2 more time units. (This can be written in MTL as O<;(P A
(O<2P)).) Although intuitively the two properties are the same, unfortunately
the two formulae are not equivalent in sampled view of time as intermediate
sampling point at time 1 may not be available. With this in mind, Rabinovich
and Hirschfeld [8] have argued that continuous time logics should be preferred
for real-time requirements. On the other hand, sampled time logics are closer to
automata theoretic models and they may have better decidability properties.

In this paper, we consider the abstraction of continuous time properties by
sampled time properties while preserving validity or counter-examples. Further
abstraction of sampled time properties by discrete time properties has already
been considered in literature using notions such as digitization [7J3I10].

We cast our work in context of Duration Calculus [I6] which was one of the
early real-time logics in computer science to make use of continuous time (or
signals). It is an interval temporal logic incorporating the measurement of ac-
cumulated duration for which a proposition holds in a time interval. Duration
Calculus constitutes a convenient and highly expressive notation for real-time
requirements. But this has also made its validity undecidable in general and hard
to check in practice. Availability of effective automatic validity and model check-
ing tools for the continuous time Duration Calculus has been a long standing
quest. We provide a partial solution to this problem.

There have been many past attempts at deciding Duration Calculus (DC).
A discrete time version of DC' called DDC' (and its extension with state quan-
tification called @ DDC') were shown to be decidable using a finite automata
theoretic decision procedure [I2]. A validity and model checking tool called DC-
VALID has been built for this logic [T2/13]. Pandya proposed a sampled time
version of DC, called Interval Duration Logic (IDL) [14]. It was argued that
this logic, although undecidable in general, is more amenable to automatic valid-
ity checking. Amongst the (partial) approaches which are available for validity
checking of IDL are bounded validity checking using SMT solvers [15] and ab-
straction to discrete duration calculus using digitization [3[15]. Both approaches
seem effective on many examples of interest. For continuous time Duration Cal-
culus, various decidable subsets have been considered [42/T7]. But these have
not found way into credible tools.

In this paper, we propose a generic version of Duration Calculus GDC[M]
whose behaviours are continuous time (signals) but the behaviour is parame-
trized by a set of admissible time intervals M. By appropriately choosing M,
we show that we can define as GDC[M] most variants of DC including DC,
IDL, DDC as well as a version of continuous DC' without point intervals called
PLDC, and a special case of IDL called Well Sampled IDL with

248 P.K. Pandya, S.N. Krishna, and K. Loya

1-Oversampling (W STDL). The behaviours of WSIDL are obtained by sam-
pling continuous time behaviours at all change points, all integer valued points
and they are oversampled by adding one more point between two consecutive
aforementioned points. Logic W STDL will play a special role in our work here.

As our main result, we show that we can give reductions (abstractions) a* and
a” from PLDC to W SIDL which respectively preserve validity and counterex-
amples. Moreover, we show that logics PLDC and DC have the same expressive
power and that there are effective translations between them. Thus, we can an-
alyze continuous time DC' properties by reduction to the sampled time logic
WSIDL. The digitization and bounded validity checking approaches to decid-
ing original IDL easily extend to its variant W SIDL. Using these, we have
constructed a tool which reduces continuous DC' formulae to DDC' formulae
preserving validity /counter examples. The discrete time validity checking tool
DCVALID [I2/T3] can analyze the resulting formulae. This provides a partial but
practical approach for automatically checking the validity of continuous time Du-
ration Calculus formulae. To our knowledge this constitutes amongst the first
tools for validity checking a continuous time real-time logic. We give some pre-
liminary experimental results to evaluate the effectiveness of our approach. The
results indicate that interesting examples from the Duration Calculus literature
can be automatically verified.

The rest of the paper is organized as follows. Section] introduces the logic
GDC[M] and various Duration Calculi as its instances. The reductions from
pointless DC (PLDC) to WSIDL is given in Section Bl Section [establishes
the equivalence of full DC' and pointless DC'. Section [gives a brief overview
of past work on reducing (Well-sampled) IDL to Discrete Duration Calculus.
Combining all these steps, a partial method for validity checking continuous
time DC' is formulated in Section[Bl Section [0 describes the experimental results
obtained by applying the proposed method to some problems of interest.

2 A Variety of Duration Calculi

Duration Calculus is a real-time logic which was originally defined for continuous
time finitely variable behaviours [16]. Variants of DC' having other forms of time
(sampled time, discrete time etc) have also been investigated [T4UT3].

In this section, we formulate a generic Duration Calculus, GDC, whose be-
haviours are parametrized by a set of admissible observation intervals I. This
allows us to give a uniform treatment of a variety of Duration Calculi which can
all be obtained by suitably choosing I.

Let (R?, <) be the set of non-negative real-numbers with usual order. Let Pvar
be the set of observable propositions. A behaviour § € Pvar — R° — {0,1}.
A behaviour 6 is finitely variable if any proposition changes value only finitely
often within any finite time interval. A finitely variable behaviour is called right
continuous if the value of a proposition P at any time point is same as the value
in its small right neighborhood. We omit this obvious definition. We shall restrict

On Sampling Abstraction of Continuous Time Logic with Durations 249

ourselves to finitely variable and right continuous behaviours, and denote the set
of all such behaviours by BEH.

Duration calculus is an interval temporal logic with measurements over time
intervals. Let RINTV = {[b,e] | bye € R, b < e} the set of all intervals over
reals. Note that these include point intervals of the form [b, b]. The measurement
terms mt of GDC have the form [P or ¢. The measurement term ¢ denotes
the time length of an interval [b,e]. The measurement term [P denotes the
accumulated duration for which P is true in 6 in an interval [b, e]. Formally, the
value of measurement term mt is defined as follows: Eval(€)(6,[b,e]) = e—b
and Eval([P)(0,[b,e]) = [, 6(P)dt.

Syntax of GDC. Let P range over Prop, ¢ over natural numbers, op over
comparison operators {§7 <, =,>,2>, >} and mt over measurement terms. Let
D range over GDC formulae with T denoting the formula “true”. The abstract
syntax of GDC'is given by:

TP TT TP | mtope | D1 Dz | DiADy | =Dy

Semantics For a given behaviour 6, the semantics of formulae is parameterized
by a set I of admissible intervals, where I C RINT'V. Let the pair (I,) be called
a segmented behaviour or s-behaviour. Let M be a specified set of s-behaviours.
We parametrize the semantics of logic GDC by M and denote this by GDC[M].
A triple 1,0, [b, e] where (I,0) € M and [b,e] € I is called an M -model.

For D € GDC[M] and M-model I,0,[b,e] let 1,0,[b,e] = D denote that
formula D evaluates to true in model I,6,[b,e]. Omitting the usual boolean
cases, this is inductively defined below. For a proposition P and a time point
t € RO, let 6, ¢ = P denote that the proposition P has value 1 at time point ¢ in
behaviour §. We omit this straightforward definition.

1,0,[b,e] = [P]° iff b=¢ and 0,b}= P

LO,be]l =[] iff b=e

I,0,be] = [[P] iff b<eand forall t: b<t<e. 6,t=P
1,0,[b,e] = mt op ¢ iff Eval(mt)(d,[b,e]) op ¢

1,0,[b,e] = D1 "Dy iff for some z:b<z<e. [bz] €I and [z,e] €T

and 1,0,[b,z] = Dy and I,6,[z,e] E Dy

Note that in the definition of , an interval [b,e] € I must be chopped into
admissible sub-intervals [b, 2], [z, ¢e] € I.

Derived operators

— oD “ true ~ D ~true holds provided D holds for some admissible subin-

terval.
— 0D % ~o=D holds provided D holds for all admissible subintervals.

— Let ext % —[1. Define Unit C ent A —(ext ~ext). Formula Unit holds for

admissible extended intervals which cannot be chopped further into smaller

admissible intervals. Let L def =T,

250 P.K. Pandya, S.N. Krishna, and K. Loya

Prefiz Validity A prefix model of D € GDC[M] is an M-model of the form
1,6,]0,r] such that I,6,[0,7] = D. Thus, in prefix models the interval begins at
initial time point 0. Also, let (I,0) = D iff for all [0,7] € I, (I,6,[0,r]) = D.
Finally, D € GDC[M] is prefix-valid denoted = D iff 1,6,[0,7] = D for all
prefix M-models I, 6, [0, r].

2.1 Duration Calculi

A variety of duration calculi available in the literature can be defined as special
cases of GDC[M] by appropriately choosing the set of s-behaviors M, and by
syntactically restricting the constructs available in the logic.

Continuous Time Duration Calculus (DC'). This is the original Duration Cal-
culus investigated by Zhou, Hoare and Hansen [16]. Duration calculus DC' can
be defined as GDC[My.| where My. = {RINTV} x BEH, i.e. in each DC
model (I,6,[b,e]) the set of admissible intervals I is fixed to RINTV, the set
of all intervals. Because of this, we shall abbreviate RINTV,6,[b,e] = D by
9, [b, 6} ':dc D.

Moreover, in the original DC, the atomic formulae of the form [P]° are dis-
allowed although a more restricted atomic formula [] which holds for all point
intervals is allowed. Thus, syntactically DC C GDC' 1t is given by the abstract
syntax: |TP‘| ‘ |—-| ‘ mt op c | D1AD2 | D1 /\D2 ‘ _|D1.

Ezample 1. [Gas burner] Consider the following safety conditions for a gas burner

(see [I6]) in DC. Let Desl f O([[Leak] = ¢ < mazxleak) and Des2 of

O([[Leak] ~[[-Leak] ~[[Leak] = £ > minsep). The desired requirement is

Conel & O < winlen = fLeak < leakbound). Then, the validity of the

formula G(mazxleak, minsep, winlen, leakbound) ' Desl A Des2 = Concl

establishes that the requirement follows from the two safety conditions. O

Pointless Duration Calculus (PLDC). This is a variant of DC without point
intervals. Let EXTINTV = {[b,e] € RINTV | b < e} be the set of ex-
tended intervals. Then, PLDC = GDC|[My] with M, = {EXTINTV}xBEH,
i.e. in each PLDC model (1,0, [b,e]) the set of admissible intervals I is fixed
as EXTINTYV, the set of all non-point intervals. We abbreviate EXTINTYV
0,[b,e] = D by 6,[b,e] =pi D. Syntactically PLDC C GDC[Mp;] given by the
abstract syntax
[[P] | mtopc | Di™Dy | DiADy | =Dy,

Erample 2. Recall that ©D % T~D~T. In PLDC formula &D holds for an
interval [b, e] if some proper subinterval [/, '] with b < b’ < ¢’ < e satisfies D.
However, in DC, the formula &D holds for an interval [b, €] if some subinterval
[b/,e'] with b <V < e’ < e satisfies D.]

On Sampling Abstraction of Continuous Time Logic with Durations 251

Interval Duration Logic (IDL). This logic was proposed by Pandya [14] as a
variant of DC' with sampled time. It was argued that IDL is more amenable
to validity checking. While validity of IDL is also undecidable in general, sev-
eral effective techniques and tools have been developed as partial methods for
validity checking of IDL. These include Bounded Model Checking [15] as well
as reduction to the decidable Discrete-time Duration Calculus using digitization
[BU15].

Given a behaviour 6, let C'(6) be the set of time points where the behaviour
changes state (including the initial point 0). Let Sy be such that C(0) C Sy where
S is a countably infinite set of sampling points which is time-divergent. Such an
Sp gives a set of sampling points such that the behaviour is over-sampled.

Let INTV (Sp) = {[b,e] | b,e € Sy, b < e} be the set of intervals spanning
sampling points. Define M;q = {(INTV (Sy),0) | 6 € BEH}. Then, we can
define IDL = GDC[M;q]. The syntax of IDL is same as the syntax of GDC.
We will abbreviate INT'V (Sy), 0, [b,e] = D by Sy, 0, [b, €] Fiq D.

It should be noted that the original IDL [I4] was formulated using finite
timed-state sequences as models. Here, we reformulate this as continuous behav-
iour with admissible intervals spanning the sampling points. It can be shown
that the two formulations are equivalent.

Well Sampled Interval Duration Logic (WSIDL). This is a special case of IDL
where continuous time behaviour is sampled at every change point and at every
integer valued point. Moreover the behaviour is also 1-oversampled by including
the midpoint between every consecutive pair of above sampling points.

Formally, define C(6) as a set of time points where the behaviour changes
state in 6 and let N be the set of non-negative integer valued points. Now define
S§'(0) = RUC(H). Also, let Mid contain the midpoints of all consecutive pairs
of points in &’(#). Define WS(0) = &’ U Mid. The set WS(6) is called the set
of well-sampling points with I1-oversampling. Here, 1-oversampling refers to the
fact that we add one additional point between every pair of consecutive elements
of S'(6).

Define WSIntv(0) = INTV (W S(0)), the set of intervals spanning elements of
WS(9). Let, Mysiat = { (WSIntv(9),0) }. Define WSIDL = GDC[Mysial)-
The syntax of WSTDL is same as the syntax of GDC. Note that the set W.S(8) is
uniquely defined by 6. Hence, in a WSIDL model I, 0, [b, €], the set of intervals
I is uniquely determined by 6 as I = W.SIntv(f). Because of this, we shall
abbreviate WSIntv(9),0, [b,e] = D by 0, [b, €] Fws D.

Discrete Duration Calculus (DDC'). This is a special case of IDL where the
formulae are interpreted only over the behaviours where C(6) C N, i.e. the
behaviours where state changes occur only at integer valued points. Moreover,
the set of sampling points are precisely the set of non-negative integers, i.e.
S(f) = XN. Let Mgq be the subset of s-behaviours of M;4 satisfying the above
condition. Then, DDC = GDC[Mgyq]. We abbreviate INTV(5(0)),6,[b,e] E D
by 97 [1)7 6] ':dd D.

252

P.K. Pandya, S.N. Krishna, and K. Loya

Consider a DC' behaviour 6 over an interval [1,5] as follows: The points marked Mid
are the newly added points which lie in between either 2 change points or a change
point and an integer point. The change points are marked with C', and integer points

with I.
1 15 29 34 43 45 49 5
Mid—= | s 175 245 2‘,95 32 37 415 44 4T 495
f f f f f f =t f T
1 1.5 2 29 3 34 4 43 4.5 49 5
C C 1 Cc 1 C 1 C C c I
1: Integer points, C: change points, Mid : oversampling points

Fig.1. A DC Behavior 6 and the corresponding sampling points in W.S(0)

The prefix validity of DDC' (as well as its extension QD DC) is decidable and

the

logic admits a finite-automata theoretic decision procedure [12]. Based on

this, a tool DCVALID has been constructed for validity and model checking of
DDC formulae [T2/T3[9].

Example 3. Some essential features of various notions of time, can be specified
by some characteristic properties.

3

Let Azl & O[[T]. This states that every interval is extended. Clearly,

Fae Azl but =y Axl.

Consider the density property Axz2 def O(ext = ext "ext). It states that
any non-point interval can be chopped into two non-point intervals. Then
Edc Az2. However, none of the sampled logics IDL, WSIDL, DDC satisfy

this formula, e.g. s Ax2.

The following property characterizes sampled time. Let Az3 ef O(ext =

((Unit ~T)A(T T Unit)). Then, all the sampled logics IDL, WSIDL, DDC
have this axiom as valid. However, £4. Az3.
Let Az4 &' O(Unit = £ < 1). It states that each atomic extended interval
is of length less than 1. This is characteristic of well sampled models with 1
oversampling. Thus, .5 Az4 but &4 Az4.

Discrete time logic DDC' is characterized by validity of the following formula.

Axs O =1 < Unit). It states that every atomic extended interval is

of unit length. Then, =44 A26 but f,s Az6. a

PLDC to WSIDL

In this section, we investigate validity /counterexample preserving reduction (ab-
straction) from the pointless fragment of DC, i.e. PLDC to the sampled time
logic with 1-oversampling, W.STDL. This involves reduction of both the models
and the formulae.

On Sampling Abstraction of Continuous Time Logic with Durations 253

Sampling Approximation of DC Models

Consider a PLDC model (EXTINTV,0, b, e]). The s-behaviour (EXTINTYV, 6)
can be represented by a W.STDL s-behaviour (W SIntv(6),0) as explained earlier
(see Figure[I).

Definition 1 (1-Sampling). Given PLDC model 0 define a map f : R° —
b ifbed, . o

WS(0) as follows. Let f(b) = {bm otherwz'se.} where by, is the midpoint of the

smallest number larger than b in S’ and the largest number smaller than b in S’.

Then, f approximates every time point in § to a sampling point in WS(6). In
Figure[] f(2.3) = f(2.88) = 2.45.

Proposition 1. We list some elementary properties of the onto map f.

— [is weakly monotonic, i.e. b < e = f(b) < f(e). However, it is not strictly
monotonic, i.e. b < e does not ensure that f(b) < f(e).

— —0.5 < f(b) — b < 0.5. This holds since f(b) is either b or the midpoint of
two points (on either side of b) at mazimum distance 1,

— For any 0 and any time point b, the state remains constant in the closed

intervals [f(b),b] and [b, f(b)]. |

Now we consider a PLDC interval [b, e]. This is mapped to its sampling approx-
imation [f(b), f(e)]. The above proposition shows that an extended interval [b, e]
can be mapped into a point interval [f(b), f(e)] with f(b) = f(e).

Proposition 2. The effect of sampling on measurements is as follows.

— =1 < [eval()(,[b,e]) — eval(€)(8,[f(b), f(e)])] < 1. Also,
— =1 <[eval(JP)(6,[b,e]) — eval([P)(0,[f(b), f(e)])] <1

Proof. We prove the first part. The proof of the second part is analogous. Let
l=c—band ! = f(e) — f(b). Let Ne =| f(e) —e|. If e € S, then Ae =0
else 0 < Ae < 0.5. Similarly we have 0 < Ab < 0.5. Thus length for the IDL
interval [f(b), f(e)] will be

U'=fle)—fb)=U=exle— (b Ab)=1U'=1LNet D

Since | Ae+ Ab |< 1,] I’ =1 |< 1 = There will be less than £1 error in the
length. ad

Approximating PLDC Formulae in WSIDL

We define a strong transformation a™ : PLDC — WSIDL and a weak trans-
formation o~ : PLDC — WSIDL as follows. Both these transformations can
be computed in linear time.

254 P.K. Pandya, S.N. Krishna, and K. Loya

PLDC formula D Weak IDL formula o~ (D) Strong IDL formula o™ (D)

1P [[P] v [P]° [[P] v [P°

l=k E-1<i<k+1 E=1>1 ANl>k+1,ie L
I<k I<k+1 I<k-1

1<k [<k+1 I<k-1

>k [>k-1 I>k+1

I>k I>k—-1 I>k+1

[P=k k—1<[P<k+1 k—1>[PA[P>k+1, ie L
JP<k JP<k+1 JP<k-1
JP<k JP<k+1 JP<k-1
P>k JP>k-1 JP>k+1
P>k JP>k-1 JP>k+1
Dy A D, a™(D1) Aa™ (D) ot (D) Aot (Do)

Dy 7Dy O[i(Dl),\Oéi(Dg) a+(D1)’\Oé+(D2)

-D1 -at (Dl) Qs (D1)

One noteworthy aspect of above abstraction is that a PLDC formula mt = k can
only be strongly approximated (using a™) by W SIDL formula L. Unfortunately,
sampling does not preserve exact measurements.

Theorem 1. For any PLDC formula D and interval [b,e] € EXTINTV, we
have

1.0, [bv 6] ':Pl D < 0, [f(b)v f(e)] ':ws a+(D)
2.0, [bv 6] ':Pl D = 0, [f(b)v f(e)] ':ws o (D)

Proof. The proof is by induction on the structure of the formula D. We give
some of the cases. The complete proof may be found in the full paper.

1. Let D = Lopk.
We first prove part (2),i.e. 6, [b, €] =pi Lop k = 0,[f(b), f(e)] Ews a~ (lopk).
Let! = e—band !’ = f(e)—f(b). From Proposition[2, we know that | I-1" |< 1
which implies I’ — 1 < I < I’ + 1. Then,
=k = k-1<l<k+1,l<k = U'<k+1,
<k =U<k+1LIl>k = 1U>k-1
I >k = I'!>k—1.In each case RHS is o~ (LHS).
We now prove part (1), i.e. 0, [b,e] =p lopk < 6,[f(b), f(e)] Ews o™ (lop k).
Let | = e—band I'! = f(e) — f(b). From Proposition 2l we know that
| I =1 |< 1 which implies] —1 <!’ <!+ 1. Then, | < k< l' <k—1 and
I>k<l'>k+1.
We have already proved that (I > k = I' > k—-1) & (=(> k) <
(' >k—-1) & (I <k« 1l <k-—1). Similarly we have proved that
(I<k=l<k+l) o (~l<k)e-U<k+1)el@>kel >k+1),
l=k <=l <kANl>k<=l<k—-—1Al>k+1. In each case RHS is
at(LHS).

On Sampling Abstraction of Continuous Time Logic with Durations 255

2. Let D = —D;. We prove only the part (1).
0,[f(b), f(e)] Ews a™(=D1) <= {Defn. a™, Semantics}
0,[f(b), f(e)] Fws @ (D1) = {Induction Hyp.}
0,[b,e] py D1 <= {Semantics}
0, [bv 6] '::Dl —Dq

3. Let D = D; ™ Dy. We prove only part (1).
6‘? [f(b)v f(e)] ':ws a+(D1 ADQ) — {Defn. a*}
0,[f(b), f(e)] Fws o (D1) ~at(Dz) <= {Semantics.}
Im e WS(0) s.t. f(b) <m < f(e) and
0,[f(b),m] Fuws o™ (D1) and 0, [m, f(e)] Fuws a™(D2) =

{f is Onto and monotonic}

Im’ € R2 s.t. b <m’ <eand f(m') =m and

0,1/(5), £(m")] s o (Dy) and 6, [£(1), (&) Fus 0*(Da) =
{Induction Hyp.}

Im' € RO s.t. b<m’ <eand¥d,[b,m] =, Dy and 6, [m/ €] Ep Dy <
{Semantics of PLDC}

Im’ € RO s.t. b <m’ < e and

0,[b,m'] Ep D1 and 0, [m/,e] Ep D2 <~
{Semantics of PLDC}

9, [b, 6] ':pl D1 ADQ.

O
Corollary 1. For any D € WSIDL,
1. Fwsa™(D) = EuD
2. 0,[b,e] Fws o™ (D) = 0,[V,€] Fp D for allt' € f71(b), € € f~1(e).
In particular, b € f=1(b), e € f~1(e). Hence, for any [b,e] € EXTINTV
0,[b,e] Fws a™ (D) = 6,[b,e] FEp D. 0

Optimality of 1-Oversampling We now show that as far as preserving valid-
ity /counter examples of PLDC formulae is concerned, increasing the oversam-
pling from 1 mid-point to say n intermediate points does not help in making
approximations a™ and o~ more precise. However, later in the paper we con-
sider a scaling of both model and formulae which can improve the precision of
the abstractions at, a~.

We consider here a case with n — 1 oversampling points, where n is a natural
number, greater than 1. In this general case, f(b) is the oversampling point
closest to b. Consider a PLDC' behaviour with change points at 0, 2, 2.2, 4.
Thus, we will have (0, so), (1, 80), (2, 1), (2.2, 82), (3, s2), (4, s3). If we decide to
have n — 1 sample points in between, then we will have the points

(07 50)’ (71”30)7 L) ((n_l)*ylps()% (1’ 30)7 (1+71L750)a ceey (1+(n_1)*71p30)7 (Qa 31)7
(2+0ﬁ2v31)7 LR (2+(n_1)*0ﬁ2751)a (22a 32)7 LR (22+(n_1)*0n8a 32)7 (3a 32)7 (3+
711,82)7 ey (3 + n:ll R 82), (47 83).

Now, consider the PLDC interval [b,¢] = [l 4 "-07 2.2 4 (n72)*0-57061

The length of this interval in PLDC is (2.2 — 1) 4 ("72x08+0.6=(n=07) "yopicp

is equal to 1 + _2'3, which is less than 1.

256 P.K. Pandya, S.N. Krishna, and K. Loya

The corresponding approximated WSIDL interval is [f (), f(e)] = [1+ ";1 ,2.2
4+ (D081 g m1.2 + "7 98] The length of this interval is 2 — 1 +
(n=08)=(=1) which simplifies to 1 + 0.2

Hence, for the given interval 0, [b,e] =, ¢ < 1 where as 0, [f(b), f(e)] Euws
¢ > 1. This shows that the closest approximation of ¢ < 1 in logic WSIDL
which preserves models is o~ (¢ < 1) = ¢ < 1 4 1. This holds for all possible
n-samplings with n > 1.

4 DC to PLDC

Theorem [allows us to abstract PLDC formulae to WSIDL formulae. We
now show that DC and PLDC have the same expressive power (modulo point
intervals). We give a translations 6 : DC — PLDC and show that it preserves
models.

While logic DC' has point intervals, the following proposition shows that DC'
cannot say anything meaningful about the states at these points. It can be proved
by induction on the structure of D.

Proposition 3. If 0,[b,b] FEac D then for all bV € R° and all ' € BEH we
have ', [V, V'] Eqe D

We first define whether a formula D is satisfiable by a point interval and denote
this by Pointsat(D).
Definition 2. Pointsat : DC — {T, L} is inductively defined as follows.
Pointsat(T) = T, Pointsat([[P]) = L
Pointsat(mt op ¢) = T iff (0 op ¢)
Pointsat(—D) = —Pointsat(D),
Pointsat(Dy A D) = Pointsat(D1) A Pointsat(Ds)
Pointsat(Dy ~Ds) = Pointsat(Dy) A Pointsat(Ds)

For example, by clause 3 we get that pointsat({ <=3) = (0<3) = T.
Proposition 4. Pointsat(D) iff 6,[b,b] Egqc D for some 0, [b,b].
Using the above we can embed DC in PLDC' as follows.

Definition 3. Let 6 : DC — PLDC be inductively defined as follows. Note that
size of the output of & can be exponential in the size of input. The computation
time is proportional to the output size.

o) = L

8(X) = X, for Xe{T, [[P], Lope, [Popec},
(5(—|D) = —|(5() (D1 /\DQ) = 6(D1) /\(S(.DQ),
6(D17"D2) = 6(D1) " 6(D2)

vV 8(D1) A Pointsat(Ds)
vV 8(D2) A Pointsat(D1)

On Sampling Abstraction of Continuous Time Logic with Durations 257

Theorem 2. For all § € Beh and [b,e] € EXTINTV, we have
0,[b,e] Eae D iff 0,[b,e] =pi 6(D)

Proof The proof is by induction on the structure of D. We prove only the case
of chop here, the whole proof can be found in the full paper.

— D =Dy " Ds. 6,]be] Eqc D1 D5 iff Im,b < m < e: 0, [b,m] =4 D1 and
0,[m, e] Ed4c Da.
Case l: b<m <e.
Then, 0, [b,m] E4. D1 and 0, [m, €] F4c D2. As [b,m],[m,e] € EXTINTV,
by the inductive hypothesis, 8, [b,m] =, 6(D1) and 6,[m,e] Ep 6(Da2).
Thus, 6, [b, e] [=pr 6(D1) ~6(D2). Conversely, if we assume that 6, [b, €] F=p
6(D1) ~8(D2), then Im,b < m < e such that 6,[b,m] =, 6(D1) and
0,[m,e] Ep 6(D2). By inductive hypothesis, this implies that 0, [b, m] =4
D1 and 9, [m, 6] 'ch D2.
Case 2: b<m=e.
Then, 0, [b, €] [=q. D1 and 0, [e, €] =4c D2. Then Pointsat(Ds), and by induc-
tive hypothesis, we have 6, [b, €] |=p1 6(D1). Conversely, if 0, [b, e] F=p 6(D1),
then by inductive hypothesis, 0,[b,e] F4c D1 = 6,[b,e] = D1 "D, for
Pointsat(Ds).
Case 3: b = m < e. Here, Pointsat(Dy). Similar to Case 2, we have 0, [b, €]
):dc Dl AD2 iff 9, [b, 6] ':pl 6(D2)
Case 4: b = m = e. This case cannot arise as [b,e] € EXTINTV. a

Corollary 2. For any D € DC,

1. Eae D iff =, 8(D) and Pointsat(D).

2. = Pointsat(D) then 0,[b,b] Feqc D for any 0, [b, b]

3. 0,b,e] i 6(D) = 0,[b,e] Fae D, for any [bye] € EXTINTV.
Derived Modalities. Applying the translation 6 to derived modality we get:
1. If Pointsat(D) then

6(0D) = (T 7=6(D)"T)
A =(=6(D)"T) A =(T7=6(D)) A —6(D)
6(¢D) = true

2. If =Pointsat(D) then

6(0D) = false
6(OD) = (T8(D)™T)
vV (8(D)"T) Vv (T76(D)) v 6(D)

The reverse translation of PLDC into DC' can be found in the full paper.

258 P.K. Pandya, S.N. Krishna, and K. Loya

5 WSIDL to DDC

Validity of sampled time logics W.SIDL as well as IDL are undecidable [14]
where as validity of discrete time logic DDC' is decidable [I2J13]. As a par-
tial technique, Chakravorty and Pandya [3J15] have proposed strong and weak
translations (abstractions) ST and WT from logic IDL to logic DDC which
respectively preserve the validity and the counter examples. These reductions
make use of the digitization technique [7II0]. By a small variant of this tech-
nique, we can also propose similar reductions from WSIDL to DDC. We omit
the details and refer the reader to the original paper [3] for details.

Theorem 3. We can define linear time computable translations ST : WSIDL
— DDC and WT : WSIDL — DDC, and a linear time computable model
transformation v from DDC models to WSIDL models such that for any for-
mula D € WSIDL, the following holds.

1.):ws D <«)de ST(D)
2. 6,b,e] traa WT(D) = r(6,[b,e]) Fws D.

6 Validity Checking DC

In order to check the validity of a DC formula D first compute if Pointsat(D) =
L. In this case the formula D is not valid by Corollary[22). Otherwise, compute
the PLDC formula 6(D) and proceed as follows:

1. Compute D’ = ST (a™(6(D)) obtained by applying strong translations of
PLDC to WSIDL and then strong translation of WSIDL to DDC. A tool
dc2qddcstrong has been implemented to compute D’ from D.

2. Check the validity of D’ using the tool DCVALID.

3. If D’ is valid, then by Theorem[3] ot (6(D)) is a valid W SIDL formula and
by Corollary [l §(D) is a valid PLDC formula. Finally Corollary [2] implies
that D is a valid DC formula.

4. If D’ is not valid (i.e. DCVALID generates a counter example) then compute
D" = WT (o (6(D)) obtained by first applying the weak translation from
PLDC to WSIDL and then applying the weak translation from WSIDL
to DDC'. A tool dc2qddcweak implements translation from D to D”.

5. Validity check D" using DCVALID. If a counter example 0, [b, €] is generated
for D" then by Theorem[3] we can infer that o~ (§(D)) has a counter example
(0, [b, €]). Then, Corollary [l implies that r(0, [b, €]) is a counter example of
6(D). Corollary 2 tells us that D also has the counter example (6, [b, €]).

6. In case D" is found to be valid (and earlier D" was found invalid), the method
fails to conclude anything about the validity of D. However, using the well-
known result on the linearity of behaviours [5], we can attempt to infer the
validity of D by checking the validity of Dy obtained by suitably scaling up
the constants in D by an integer k > 1. Theorem [below states that the
validity of D is preserved by such transformation. The above steps must be
iterated for D;, with different values of k.

On Sampling Abstraction of Continuous Time Logic with Durations 259

Theorem 4. Let 0,[b,e] Eqc D and let k € Rsg. Then ', [b-k,e - k] Eac Dk
where Dy, is the DC' formula obtained from D by replacing each occurrence of
JPopcby [Popc-kandlopcbylopc-kand® is a behaviour satisfying
9'(t) = 0(}) for all t € R. |

7 Experimental Results

We first illustrate the DC validity checking method of the previous section by a
simple example.

Example 4. Let D % ([TV ([P] ~true) Vv ([[-P] ~true)). Formula Ax7 “op

is stated as an axiom of DC [I6], i.e. |Fq. Az7. We verify its validity using the
method of previous section. We have, Pointsat(D) and §(D) = ((([[P]™T)V
TPV (([[-P]~T) V [[-P])). Taking strong translation to W.SIDL we ob-
tain that D’ = o (8(D)) is (([P1° v [[PT)~T) vV ([P1°V [[P])) v (([=P1° v
[=P])~T) V (([-P]° vV [[=P]))). Then, Az7" = a*(§(Az7)) is obtained as
(T ™=D' "T)A~(T "=D')A=(=D""T) A D' This is a valid WSIDL for-
mula. We do not give the translation Az7"” of this into DDC which can be found
in the full paper. Our tool dc2qddcstrong was used to compute the full trans-
lation and resulting DDC' formula was shown valid using the DCVALID tool
taking a total time of 0.05 sec. O

A benchmark example of DC formula, the Gas burner problem was presented
earlier in Example [Il We have checked the validity of the gas burner formula
G(mazxleak, minsep, winlen, leakbound) for several instances of the parameters
using the validity checking method of the previous section. The times taken for
translating the formula into DDC' as well as the validity checking time taken by
the tool DCVALID are given in Table[Il The modal strength reduction technique
[9] was used to optimize the performance of the DCVALID tool. The experiments
were run on a 1GHz 1686 PC with 1GB RAM running RedHat Linux 9.0. Both
valid and invalid instances were tried. For the instance G(2, 6,15, 7) the method
failed to give any result as the strong translation to DDC was invalid but the

Table 1. Results for Gas Burner

Parameters dc2qddc DCVALID Parameters dc2qddc DCVALID DCVALID

Strong (hh:mm:ss) Strong/ strong weak
Weak (hh:mm:ss) (hh:mm:ss)
Gas Burner: Valid Cases Gas Burner: Cases with counter examples
(4,8,30,18) .3s 02.91s (2,4,99,6) .38 1.25s 1m 22s
(20,40,120,50) .3s 2m 28.43s (3,3,150,36) .38 18m 37s 19m 31.53s
(1,4,20,12) 3s 1.50s (20,40,200,75) .3s 33m 29.54s 6m 27.55s
(1,4,60,32) 3s 14.95s (2,4,500,15) .3s 2h 5m 3.75s 2h 4m 8.91s

(2,4,10053) .35 1m 1.62s (5,5,350,25) .3s 2h 13m 53s 2h 14m 12s
(2,4,300,250) .3s 20m 39.22s (7,3, 175,27) .3s 33m 37.47s 32m 5T7s

260 P.K. Pandya, S.N. Krishna, and K. Loya

weak translation gave valid formula. However, using Theorem [and scaling the
values of constants by 2, we obtained the instance G(4, 12, 30, 14), for which the
strong translation resulted into a valid DDC' formula, thereby confirming the
validity of the original DC formula G(2,6,15,7).

References

1. R. Alur and D.L. Dill, Automata for modeling real-time systems, Proc. of 17th
ICALP, LNCS 443, (1990), Springer-Verlag, pp 332-335.

2. A. Bouajjani, Y. Lakhnech and R. Robbana, From Duration Calculus to Linear
Hybrid Automata, Proc.of 7th CAV, LNCS 939, (1995), Springer-Verlag, pp 196-
210.

3. G. Chakravorty and P.K. Pandya, Digitizing Interval Duration Logic, Proc. of 15th
CAV, LNCS 2725, (2003), Springer-Verlag, pp 167-179.

4. M. Frénzle, Model-Checking Dense-Time Duration Calculus, in M.R. Hansen
(ed.), Duration Calculus: A Logical Approach to Real-Time Systems Workshop
proceedings of ESSLLI X, 1998.

5. M. Fréanzle, Take it NP-easy: Bounded Model Construction for Duration Calculus.
Proc. Tth FTRTFT, LNCS 2469, (2002), Springer-Verlag, pp 245-264.

6. Dang Van Hung and P. H. Giang, Sampling Semantics of Duration Calculus, Proc.
4th FTRTFT, LNCS 1135, (1996), Springer-Verlag, pp 188-207.

7. T. A. Henzinger, Z. Manna, and A. Pnueli, What good are digital clocks?, Proc.
19th ICALP, LNCS 623, (1992), Springer-Verlag, pp. 545-558.

8. Y. Hirshfeld and A. Rabinovich, Logics for Real-time: Decidability and Complexity,
Fundamenta Informaticae, 62(1), (2004), pp 1-28.

9. S. N. Krishna and P. K. Pandya, Modal Strength reduction in QDDC, Proc. 25th
FST & TCS, LNCS 3821, (2005), Springer-Verlag, pp 444-456.

10. J. Ouaknine and J. Worrell, Revisiting Digitization, Robustness and Decidability
for Timed Automata, Proc. 18th IEEE Symposium on LICS, (2003), pp 198-207.

11. J. Ouaknine and J. Worrell, On Decidability of Metric Temporal Logic, Proc. 20th
IEEE Symposium on LICS, (2005), pp 188-197.

12. P.K. Pandya, Specifying and Deciding Quantified Discrete-time Duration Calcu-
lus Formulae using DCVALID: An Automata Theoretic Approach, in Proc. RT-
TOOLS’2001, (2001).

13. P.K. Pandya, Model checking CTL*[DC], Proc. 7th TACAS, LNCS 2031, (2001),
Springer-Verlag, pp 559-573.

14. P.K. Pandya, Interval duration logic: expressiveness and decidability, Proc. TPTS,
ENTCS 65(6), (2002), pp 1-19.

15. B. Sharma, P.K. Pandya and S. Chakraborty, Bounded Validity Checking of Inter-
val Duration Logic, Proc. 11th TACAS, LNCS 3440, (2005), Springer-Verlag, pp
301-316.

16. Zhou Chaochen, C.A.R. Hoare and A.P. Ravn, A Calculus of Durations, Info. Proc.
Letters, 40(5), 1991.

17. Zhou Chaochen, Zhang Jingzhong, Yang Lu and Li Xiaoshan, Linear duration
invariants. in Proc. 8rd FTRTFT, LNCS 863, (1994), Springer Verlag, pp 86-1009.

Assume-Guarantee Synthesis*

Krishnendu Chatterjee’ and Thomas A. Henzinger!-2

! University of California, Berkeley, USA
2 EPFL, Switzerland
{c krish,tah}@eecs.berkeley.edu

Abstract. The classical synthesis problem for reactive systems asks,
given a proponent process A and an opponent process B, to refine A so
that the closed-loop system A||B satisfies a given specification @. The
solution of this problem requires the computation of a winning strategy
for proponent A in a game against opponent B. We define and study
the co-synthesis problem, where the proponent A consists itself of two
independent processes, A = A1||A2, with specifications @1 and &2, and
the goal is to refine both A; and Az so that Ai||Az||B satisfies $1 A ®5.
For example, if the opponent B is a fair scheduler for the two processes
A; and As, and &; specifies the requirements of mutual exclusion for A;
(e.g., starvation freedom), then the co-synthesis problem asks for the
automatic synthesis of a mutual-exclusion protocol.

We show that co-synthesis defined classically, with the processes A;
and A either collaborating or competing, does not capture desirable
solutions. Instead, the proper formulation of co-synthesis is the one where
process A; competes with Az but not at the price of violating @1, and
vice versa. We call this assume-guarantee synthesis and show that it can
be solved by computing secure-equilibrium strategies. In particular, from
mutual-exclusion requirements the assume-guarantee synthesis algorithm
automatically computes Peterson’s protocol.

1 Introduction

The algorithmic synthesis (or control) of reactive systems is based on solving
2-player zero-sum games on graphs [I112]. Player 1 (representing the system or
controller to be synthesized) attempts to satisfy a specification @; player 2 (rep-
resenting the environment or plant) tries to violate the specification. Synthesis is
successful if a strategy for player 1 can be found which ensures that @ is satisfied
no matter what player 2 does. These games are zero-sum, because the objective
of player 2 is =&, the negation of player 1’s objective. In other words, synthesis
assumes the worst-case scenario that player 2 is as obstructive as possible.

In many game situations in economics, the two players do not have strictly
complementary objectives. Then the appropriate notion of rational behavior
is that of a Nash equilibrium. One also encounters non-zero-sum situations in

* This research was supported in part by the Swiss National Science Foundation and
by the NSF grants CCR-0225610 and CCR-0234690.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 261-[Z75] 2007.
© Springer-Verlag Berlin Heidelberg 2007

262 K. Chatterjee and T.A. Henzinger

computer science applications [10]. In this paper, we demonstrate that non-zero-
sum situations arise in the co-synthesis problem. In co-synthesis, we are not
asked to synthesize a single reactive process, but a system composed of several
processes P;, each with its own specification @;. For instance, the design of a
mutual-exclusion protocol is a co-synthesis question: each one of two processes
P, and P, is supposed to satisfy certain requirements, such as mutual exclusion,
bounded overtaking, and starvation freedom. In such a situation, the processes
are neither collaborating nor are they strictly competitive: they are not collabo-
rating because process P; cannot assume that P, will help establishing &;; they
are not strictly competitive because process P» will not obstruct @, at all costs,
but only if doing so does not endanger @-. In other words, the two processes are
conditionally competitive: process P; can assume that P, will primarily try to
satisfy @5, and only secondarily try to violate @1, and vice versa. This situation
can be captured by 2-player games with lexicographic objectives, and Nash equi-
libria for such lexicographic objectives are called secure equilibria [4]. Formally,
a pair of strategies for the two players is winning and secure if (1) both players
satisfy their objectives by playing the strategies, and (2) if one player deviates
from her strategy in order to harm the other player, then the other player can
retaliate by violating the first player’s objective. We refer to the resulting payoff
profile, with both players winning, as a winning secure equilibrium.

We formally define the co-synthesis problem, using the automatic synthesis
of a mutual-exclusion protocol as a guiding example. More precisely, we wish
to synthesize two processes P; and P so that the composite system P ||P:||R,
where R is a scheduler that arbitrarily but fairly interleaves the actions of P
and Ps, satisfies the requirements of mutual exclusion and starvation freedom for
each process. We show that traditional zero-sum game-theoretic formulations,
where P, and P» either collaborate against R, or unconditionally compete, do
not lead to acceptable solutions. We then show that for the non-zero-sum game-
theoretic formulation, where the two processes compete conditionally, there ex-
ists an unique winning secure-equilibrium solution, which corresponds exactly to
Peterson’s mutual-exclusion protocol. In other words, Peterson’s protocol can be
synthesized automatically as the winning secure strategies of two players whose
objectives are the mutual-exclusion requirements. This is to our knowledge the
first application of non-zero-sum games in the synthesis of reactive processes. It
is also, to our knowledge, the first application of Nash equilibria —in particular,
the special kind called “secure”— in system design.

The new formulation of co-synthesis, with the two processes competing con-
ditionally, is called assume-guarantee synthesis, because similar to assume-
guarantee verification (e.g., [I]), in attempting to satisfy her specification, each
process makes the assumption that the other process does not violate her own
specification. The solution of the assume-guarantee synthesis problem can be ob-
tained by computing secure equilibria in 3-player games, with the three players
Py, Py, and R. Previously, meaningful (i.e., unique maximal) secure equilibria
were known to exist only for 2-player games [4], and there it was also shown that
in general such meaningful equilibria need not exist for three players. Here we

Assume-Guarantee Synthesis 263

while(flag[1] & turn=1) nop;
while(flag[2] & turn=1) nop;
while(flag[2] & turn=2) nop;

while(flag[1] & turn=1) nop; (C6)
while(flag[2] & turn=1) nop; (C7)
while(flag[2] & turn=2) nop; (C8)

do do

{ {

flag[1] :=true; turn:=2; flag[2] :=true; turn:=1;

| while(flag[1]) nop; | while(flag[1]) nop; cn
| while(flag[2]) nop; | while(flagl[2]) nop; (c2)
| while(turn=1) nop; | while(turn=1) nop; (C3)
| while(turn=2) nop; | while(turn=2) nop; (c4)
| while(flag[1] & turn=2) nop; | while(flag[1] & turn=2) nop; (C5)
| |

| |

| |

Crl:=true; fin_wait; Crl:=false; Cr2:=true; fin_wait; Cr2:=false;
flag[1] :=false; flag[2] :=false;
wait[1]:=1; wait[2]:=1;
while(wait[1]=1) while(wait[2]=1)

| nop; | nop; (€9)

| wait[1]:=0; | wait[2]:=0; (C10)
} while(true) } while(true)

Fig. 1. Mutual-exclusion protocol synthesis

extend the theoretical results of [4] in two ways, in order to solve the assume-
guarantee synthesis problem. First, we prove the existence of meaningful secure
equilibria in the special case of 3-player games where the third player can win
unconditionally. This special case arises in assume-guarantee synthesis, because
the winning condition of the third player (i.e., the scheduler) is fairness. Second,
we give an algorithm for answering the existence of a winning secure equilibrium
(Theorem 2), and for computing the corresponding strategies (Theorem 3). These
algorithms extend those of [4] from two to three players.

On large state spaces, assume-guarantee synthesis, like all algorithmic meth-
ods, can be impractical. In Section 4, we provide an abstraction methodology for
assume-guarantee synthesis. We show how a game structure can be abstracted,
independently for player 1 and player 2, so that from certain winning strategies
on the two abstract games, we can infer winning secure strategies on the concrete
game. To our knowledge, this is the first abstraction methodology that works
with two independent abstractions of a single game structure. Single-player ab-
stractions suffice for zero-sum games (the abstraction weakens one player and
strengthens the other). However, for non-zero-sum games, the two-abstractions
methodology suggests itself, because each abstraction focuses on the objective of
a different player and may thus omit different details. In this way, both abstrac-
tions may have smaller state spaces than a combined abstraction would. Specifi-
cally, we provide proof rules for inferring winning secure strategies on a concrete
3-player non-zero-sum game from classical winning strategies on two abstract
2-player zero-sum games, for the cases of safety and Biichi objectives. In fact, in
the safety case, our proof rule corresponds closely to the assume-guarantee rule

264 K. Chatterjee and T.A. Henzinger

of [1]. In the Biichi case, our rule provides a novel assume-guarantee rule for the
verification of specifications under weak fairness.

Related work. We use non-zero-sum games in a perfect-information setting to
restrict the power of an adversary in the synthesis of reactive systems. Another
way to restrict the power of the adversary is to allow the adversary only a partial
view of the state space. The resulting class of imperfect-information games [313],
and more generally, distributed games [8[9], have been studied extensively in the
literature, but only with zero-sum (strictly competitive) objectives. The compu-
tational complexity of imperfect-information games is typically much higher than
of the perfect-information analogues, and several problems become undecidable
in the distributed setting. As illustrated with the mutual-exclusion example, we
believe that non-zero-sum games have their place in system synthesis, for syn-
thesizing components with different specifications. They restrict the behaviors
of the players in a natural way, by focusing on non-zero-sum objectives, without
the exponential (or worse) cost of limiting information.

2 Co-synthesis

In this section we define processes, refinement, schedulers, and specifications. We
consider the traditional co-operative [B] and strictly competitive [TIJT2] versions
of the co-synthesis problem; we refer to them as weak co-synthesis and classical
co-synthesis, respectively. We show the drawbacks of these formulations and then
present a new formulation of co-synthesis, namely, assume-guarantee synthesis.

Variables, valuations, and traces. Let X be a finite set of variables such that
each variable x € X has a finite domain D,. A valuation v on X is a function
v: X — Jyex Do that assigns to each variable 2 € X a value v(z) € D,. We
write V for the set of valuations on X. A trace on X is an infinite sequence
(vo, v1,v2,...) € V¥ of valuations on X. Given a valuation v € V and a subset
Y C X of the variables, we denote by v [Y the restriction of the valuation v
to the variables in Y. Similarly, for a trace 7 = (vg,v1,v2,...) on X, we write
TIY =(vo [Y,v1 [Y,ua [Y,...) for the restriction of 7 to the variables in Y.
The restriction operator is lifted to sets of valuations, and to sets of traces.

Processes and refinement. For i € {1,2}, a process P; = (X;,6;) consists of a
finite set X; of variables and a nondeterministic transition function 6; : V; —
Vi \ 0, where V; is the set of valuations on X;. The transition function maps a
present valuation to a nonempty set of possible successor valuations. We write
X = X7 U X5 for the set of variables of both processes; note that some variables
may be shared by both processes. A refinement of process P; = (X;,6;) is a
process P/ = (X, 6}) such that (1) X; C X/, and (2) for all valuations v’ on X/,
we have 6,(v') | X; C 6;(v' | X;). In other words, the refined process P/ has
possibly more variables than the original process P;, and every possible update
of the variables in X; by P/ is a possible update by P,. We write P/ < P; to
denote that P/ is a refinement of P;. Given two refinements P| of P, and Py of
Py, we write X’ = X{ U X} for the set of variables of both refinements, and we

denote the set of valuations on X’ by V.

Assume-Guarantee Synthesis 265

Schedulers. Given two processes P; and Py, a scheduler R for P; and P, chooses
at each computatiuon step whether it is process P;’s turn or process P;’s turn
to update its variables. Formally, the scheduler R is a function R : V* — {1,2}
that maps every finite sequence of global valuations (representing the history
of a computation) to ¢ € {1,2}, signaling that process P; is next to update its
variables. The scheduler R is fair if it assigns turns to both P; and P infinitely
often; i.e., for all traces (vg, v1, va, .. .) € V¥, there exist infinitely many j > 0 and
infinitely many k > 0 such that R(vo,...,v;) =1 and R(vo,...,v;) = 2. Given
two processes P; = (X1,61) and P, = (X2, 62), a scheduler R for P; and Ps,
and a start valuation vy € V, the set of possible traces is [(P1 || P2 || R)(vo)] =
{(Uo,'[)17’l)27...) e vv ‘ vj > 0. R('Uo,...,'l}j) = ¢ and Vj+1 i (X\XZ) = vj i
(X\X;) and vjq1 [X; € 6;(v; | X;)}. Note that during turns of one process P,
the values of the private variables X \ X; of the other process remain unchanged.

Specifications. A specification ®; for processs P; is a set of traces on X; that
is, ®; C V. We consider only w-regular specifications [I4]. We define boolean
operations on specifications using logical operators such as A (conjunction) and
— (implication).

Weak co-synthesis. In all formulations of the co-synthesis problem that we
consider, the input to the problem is given as follows: two processes P, = (X1, 61)
and P, = (Xo, 82), two specifications @; for process 1 and @, for process 2, and
a start valuation vy € V. The weak co-synthesis problem is defined as follows:
do there exist two processes P{ = (X7,61) and Py = (X}, 6}), and a valuation
vy € V7, such that (1) P{ < Py and Py < P» and o)) | X = vg, and (2) for all fair
schedulers R for P| and Pj, we have [(P] || P || R)(v))] | X C (D1 A Pa).

Ezample 1 (Mutual-exclusion protocol synthesis). Consider the two processes
shown in Fig. [[l Process P; (on the left) places a request to enter its critical
section by setting flag[1] :=true, and the entry of P; into the critical section
is signaled by Cri:=true; and similarly for process P, (on the right). The two
variables flag[1] and flag[2] are boolean, and in addition, both processes may
use a shared variable turn that takes two values 1 and 2. There are 8 possible
conditions C1-C8 for a process to guard the entry into its critical section[] The
figure shows all 8 x 8 alternatives for the two processes; any refinement without
additional variables will choose a subset of these. Process P; may stay in its crit-
ical section for an arbitrary finite amount of time (indicated by fin wait), and
then exit by setting Cril:=false; and similarly for process P,. The while loop
with the two alternatives C9 and C10 expresses the fact that a process may wait
arbitrarily long (possibly infinitely long) before a subsequent request to enter its
critical section.

We use the notations 0 and < to denote always (safety) and eventually (reach-
ability) specifications, respectively. The specification for process P; consists of
two parts: a safety part §**** = O—(Crl = true A Cr2 = true) and a liveness

! Since a guard may check any subset of the three 2-valued variables, there are 256
possible guards; but all except 8 can be discharged immediately as not useful.

266 K. Chatterjee and T.A. Henzinger

do do
{ {
flag[1] :=true; turn:=2; flag[2] :=true; turn:=1;
while (flag[2] & turn=1) nop; while (flag[1] & turn=2) nop; (C8+C5)
Crl:=true; fin_wait; Crl:=false; Cr2:=true; fin_wait; Cr2:=false;
flag[1] :=false; flag[2] :=false;
wait[1]:=1; wait[2]:=1;
while(wait[1]=1) while(wait[2]=1)
| nop; | nop; (€9
| wait[1]:=0; | wait[2]:=0; (c10)
} while(true) } while(true)

Fig. 2. Peterson’s mutual-exclusion protocol

part #8°¢ = O(flag[l] = true — <(Crl = true)). The first part **** speci-
fies that both processes are not in their critical sections simultaneously (mutual
exclusion); the second part #)"°® specifies that if process Py wishes to enter its
critical section, then it will eventually enter (starvation freedom). The specifica-
tion @, for process P; is the conjunction of #5"** and #Y"°. The specification
@, for process P, is symmetric.

The answer to the weak co-synthesis problem for Example[llis “Yes.” A solution
of the weak co-synthesis formulation are two refinements P; and Py of the two
given processes P; and P, such that the composition of the two refinements
satisfies the specifications @1 and &4 for every fair scheduler. One possible so-
lution is as follows: in Pj, the alternatives C4 and C10 are chosen, and in Py,
the alternatives C3 and C10 are chosen. This solution is not satisfactory, because
process P;’s starvation freedom depends on the fact that process P, requests to
enter its critical section infinitely often. If P» were to make only a single request
to enter its critical section, then the progress part of &1 would be violated.

Classical co-synthesis. The classical co-synthesis problem is defined as follows:
do there exist two processes P; = (X7,61) and Pj = (X}, 68%), and a valuation
vy € V', such that (1) P{ < P, and Py < P, and v | X = vp, and (2) for all
fair schedulers R for P and Pj, we have (a) [(P{ || P2 || R)(v§)] | X C &1 and
(b) (P || P4 || RYwh)] | X € s,

The answer to the classical co-synthesis problem for Example [lis “No.” We
will argue later (in Example) why this is the case.

Assume-guarantee synthesis. We now present a new formulation of the co-
synthesis problem. The main idea is derived from the notion of secure equi-
libria [4]. We refer to this new formulation as the assume-guarantee synthesis
problem; it is defined as follows: do there exist two refiements P = (X7, 6]) and
Py = (X},65), and a valuation v € V', such that (1) P{ < P, and Pj <X Py
and vy, [X = vy, and (2) for all fair schedulers R for P and Pj, we have

Assume-Guarantee Synthesis 267

(@) [P Po || RYW))] | X € (@5 — @1) and (b) [(Py || B[l R)(wp)] | X C
(1 — @) and (c) [(P] || P} || R)(§)] | X C (&, A).

The answer to the assume-guarantee synthesis problem for Example[lis “Yes.”
A solution P| and Pj is shown in Fig. 2l We will argue the correctness of this so-
lution later (in Example[). The two refined processes P; and Pj present exactly
Peterson’s solution to the mutual-exclusion problem. In other words, Peterson’s
protocol can be derived automatically as an answer to the assume-guarantee syn-
thesis problem for the requirements of mutual exclusion and starvation freedom.
The success of assume-guarantee synthesis for the mutual-exclusion problem,
together with the failure of the classical co-synthesis, suggests that the classical
formulation of co-synthesis is too strong.

3 Game Algorithms for Co-synthesis

We reduce the three formulations of the co-synthesis problem to problems about
games played on graphs with three players.

Game graphs. A 3-player game graph G = ((S, E), (S1,52,S53)) consists of a
directed graph (S, E) with a finite set S of states and a set E C S? of edges,
and a partition (51, S2,53) of the state space S into three sets. The states in S;
are player-i states, for i € {1,2,3}. For a state s € S, we write E(s) = {t € S|
(s,t) € E} for the set of successor states of s. We assume that every state has
at least one outgoing edge; i.e., E(s) is nonempty for all states s € S. Beginning
from a start state, the three players move a token along the edges of the game
graph. If the token is on a player-i state s € S;, then player ¢ moves the token
along one of the edges going out of s. The result is an infinite path in the game
graph; we refer to such infinite paths as plays. Formally, a play is an infinite
sequence (s, $1, S2, . . .) of states such that (s, sg+1) € F for all k > 0. We write
2 for the set of plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy o; for player ¢ is a function o; : S* - S; — S that, given a
finite sequence of states (representing the history of the play so far) which ends
in a player-i state, chooses the next state. The strategy must choose an available
successor state; i.e., for all w € S* and s € S, if o;(w - s) = ¢, then t € E(s).
We write X; for the set of strategies for player i. Strategies in general require
memory to remember some facts about the history of a play. An equivalent
definition of strategies is as follows. Let M be a set called memory. A strategy
o = (%, 0™) can be specified as a pair of functions: (1) a memory-update function
o : S x M — M that, given the memory and the current state, updates the
memory; and (2) a next-state function o™ : S x M — S that, given the memory
and the current state, determines the successor state. The strategy o is finite-
memory if the memory M is finite. The strategy o is memoryless if the memory
M is a singleton set. Memoryless strategies do not depend on the history of a
play, but only on the current state. A memoryless strategy for player i can be
specified as a function o; : S; — S such that o;(s) € E(s) for all s € S;. Given a

268 K. Chatterjee and T.A. Henzinger

start state s € S and three strategies o; € X;, one for each of the three players
i € {1,2,3}, there is an unique play, denoted w(s, o1,02,03) = (S0, 1, S2, - - .),
such that sg = s and for all k£ > 0, if s, € S;, then o;(sg, 81, .., 8k) = Sgt1; this
play is the outcome of the game starting at s given the three strategies o1, o9,
and o3.

Winning. An objective ¥ is a set of plays; i.e., ¥ C (2. The following notation is
derived from ATL [2]. For an objective ¥, the set of winning states for player 1
in the game graph G is {(1)g(¥) = {s € S| Jo1 € X\. Voo € Xy. Vo3 €
Ys3. w(s,01,02,03) € W}; a witness strategy o1 for player 1 for the existential
quantifier is referred to as a winning strategy. The winning sets (2))¢(¥) and
(3 (¥) for players 2 and 3 are defined analogously. The set of winning states
for the team consisting of player 1 and player 2, playing against player 3, is
<<172>>G(@) = {8 es ‘ doy € X1, oy € Xy, Vo3 € X3, w(8,01,0'270'3) S W} The
winning sets (I)q(¥) for other teams I C {1,2,3} are defined similarly. The
following determinacy result follows from [6].

Theorem 1 (Finite-memory determinacy [6]). Let ¥ be an w-regular ob-
jective, let G be a 3-player game graph, and let T C {1,2,3} be a set of the
players. Let J = {1,2,3}\I. Then (1) {(I)c(@) = S\ {(J)c(—¥), and (2) there
ezist finite-memory strategies for the players in I such that against all strategies
for the players in J, for all states in s € (I)a(¥), the play starting at s given
the strategies lies in W.

Game solutions to weak and classical co-synthesis. Given two processes
P, = (X31,61) and P, = (X2,82), we define the 3-player game graph G =
((S,E),(S1,52,853)) as follows: let S = V x {1,2,3}; let S; = V x {i} for
i € {1,2,3}; and let E contain (1) all edges of the form ((v,3),(v,1)) for
v € V, (2) all edges of the form ((v,3),(v,2)) for v € V, and (3) all edges
of the form ((v,i),(u,3)) for i € {1,2} and w | X; € &(v | X;) and
u (X \X;) =v [(X\X;). In other words, player 1 represents process P,
player 2 represents process P,, and player 3 represents the scheduler. Given a
play of the form w = ((vo, 3), (vo, @0), (v1,3), (v1,41), (v2,3),...), where i; € {1,2}
for all j > 0, we write [w];,2 for the sequence of valuations (vg,v1,v2,...) in w
(ignoring the intermediate valuations at player-3 states). A specification C V%
defines the objective [P] = {w € 2| [w]1,2 € §}. In this way, the specifications
@1 and P, for the processes Py and P, provide the objectives ¥; = [@1] and
Uy = [®] for players 1 and 2, respectively. The objective for player 3 (the
scheduler) is the fairness objective W3 = Fair that both S; and Sy are visited
infinitely often; i.e., Fair contains all plays (so,s1, s2,...) € {2 such that s; € S}
for infinitely many j > 0, and si € Ss for infinitely many & > 0.

Proposition 1. Given two processes Py = (X1,61) and Py = (X3,62), two
specifications @1 for Py and @2 for P, and a start valuation vy € V, the answer
to the weak co-synthesis problem is “Yes” iff (vo,3) € ((1,2)5(Fair — ([1] A
[®2])); and the answer to the classical co-synthesis problem is “Yes” iff both
(v0,3) € (1) a(Fair — [@1]) and (vo,3) € (2)z(Fair — [@2]).

Assume-Guarantee Synthesis 269

Ezxample 2 (Failure of classical co-synthesis). We now demonstrate the failure of
classical co-synthesis for Example [l We show that for every strategy for process
P, there exist spoiling strategies for process P, and the scheduler such that
(1) the scheduler is fair and (2) the specification @; of process P is violated. With
any fair scheduler, process P; will eventually set flag[1]:=true. Whenever
process Pj enters its critical section (setting Crl:=true), the scheduler assigns a
finite sequence of turns to process Ps. During this sequence, process P enters its
critical section: it may first choose the alternative C10 to return to the beginning
of the the main loop, then set flag[2] :=true; turn:=1; then pass the guard
C4: (since (turn # 2)), and enter the critical section (setting Cr2:=true). This
violates the mutual-exclusion requirement ®7**** of process P;. On the other
hand, if process P, never enters its critical section, this violates the starvation-
freedom requirement @5 °® of process P;. Thus the answer to the classical
co-synthesis problem is “No.”

Game solution to assume-guarantee synthesis. We extend the notion of
secure equilibria [4] from 2-player games to 3-player games where player 3 can
win unconditionally; i.e., {(3)a(¥s) = S for the objective W5 for player 3. In
the setting of two processes and a scheduler (player 3) with a fairness objective,
the restriction that ((3)¢(¥3) = S means that the scheduler has a fair strategy
from all states; this is clearly the case for W3 = Fair. (Alternatively, the scheduler
may not required to be fair; then W3 is the set of all plays, and the restriction is
satisfied trivially.) The concept of secure equilibria is based on a lexicographic
preference ordering of payoff profiles, which can be extended naturally from two
to three players under the restriction that player 3 can win unconditionally. We
first present the definition of secure equilibria and then characterize the winning
secure equilibrium states as the winning states of certain subgames with zero-
sum objectives (Theorem [2]); this result is a non-trivial generalization of [4] from
two to three players. We then establish the existence of finite-memory winning
secure strategies (Theorem B]). This will allow us to solve the assume-guarantee
synthesis problem by computing winning secure equilibria (Theorem H).

Payoffs. In the following, we fix a 3-player game graph G and objectives ¥,
Wy, and W5 for the three players such that (3)¢(¥3) = S. Given strategies o;
for the three players i € {1,2,3}, and a state s € S, the payoff p;(s,o1,02,03)
for player i is 1 if w(s,01,02,03) € ¥,;, and 0 otherwise. The payoff profile
(p1(s,01,02,03), p2(s,01,02,03), p3(s, 01,02, 03)) consists of the payoff for each
player. Since ((3))¢(¥3) = S, any equilibrium payoff profile will assign payoff 1
to player 3. Hence we focus on payoff profiles whose third component is 1.

Payoff-profile ordering. The preference order <; for player ¢ on payoff profiles
is defined by (p1, p2, p3) <i (p1, ph, p%) iff either (1) p; < pi, or (2) p; = p; and
pi+pr > pi+p; for j, k€ {1,2,3}\{i} with j # k. In the case where the payoff for
player 3 is 1, the player-1 preference order <; on payoff profiles is lexicographic:
(p1,p2, 1) <1 (p1, P, 1) iff either (1) p1 < pj, or (2) p1 = pj and py > py; that is,
player 1 prefers a payoff profile that gives her greater payoff, and if two payoff
profiles match in the first component, then she prefers the payoff profile in which

270 K. Chatterjee and T.A. Henzinger

player 2’s payoff is smaller. The preference order for player 2 is symmetric. The
preference order for player 3 is such that (p1, p2, 1) <3 (p1, v, 1) iff p1+p2 > pi+
p4. Given two payoff profiles (p1, p2, p3) and (pf, ph, ph), we write (p1, p2, p3) =
(p1, b, py) iff p; = pf for all ¢ € {1,2,3}, and we write (p1, p2, p3) =i (pl, p5, P%)
iff (p1,p2,p3) < (p1, P2 p5) or (p1,p2, p3) = (p1, P2: P3)-

Secure equilibria. A strategy profile (o1, 02, 03) is a secure equilibrium at a state
s € S iff the following three conditions hold:

vo—ll €. (pl(S,O'/l,02703)7})2(870/170'2,O’g),p3(8,0'/170'270'3)) =1 p;
VJIQ € 22’ (p1(87Ulu0/2703)7p2(570170/2703)7p3(870170/2703)) =2 P;
Yoy € X3. (p1(s,01,02,03), p2(s,01,02,03), p3(s,01,02,03)) =3 p;

where p = (pi(s,01,02,03), p2(s,01,02,03),p3(s,01,02,03)). In other words,
(01,02,03) is a Nash equilibrium with respect to the payoff-profile orderings =<;
for the three players i € {1,2,3}. For u,w € {0,1}, we write Sy,1 C S for the
set of states s such that a secure equilibrium with the payoff profile (u,w,1)
exists at s; that is, s € Sy, iff there is a secure equilibrium (o1, 09,03) at s
such that (pi(s,o1,02,03),p2(s,01,092,03), p3(s,01,02,03)) = (u,w,1). More-
over, we write MS,,,1(G) C Sy for the set of states s such that the pay-
off profile (u,w,1) is a maximal secure equilibrium payoff profile at s; that is,
5 € MSyup1(G) iff (1) s € Sywi, and (2) for all v/, w’ € {0,1}, if s € Sywr1, then
both (v/,w',1) <1 (u,w,1) and (v/,w’,1) <5 (u,w,1). The states in MSy11(G)
are referred to as winning secure equilibrium states, and the witnessing secure
equilibrium strategies as winning secure strategies.

Theorem 2. Let G be a 3-player game graph G with the objectives W1, Wy, and
W3 for the three players such that (3)c(Ws) = S. Let

(a5 — w);
(2Nc(Fs — W);
(1,3)au, (Y1 A W3 A —Wy);
(2,3)aru, (W2 A W3 A —¥);
W= <<172>> [(S\(z10z2)) (W3 — (V1 A Pa)).
Then the following assertions hold: (1) at all states in Z1 the only secure equilib-

rium payoff profile is (1,0,1); (2) at all states in Zy the only secure equilibrium
payoff profile is (0,1,1); and (3) W = MSy11(G).

1
2
1
2

Proof. We prove parts (1) and (3); the proof of part (2) is similar to part (1).

Part (1). Since {(3)c(¥3) = S and Z; C Uy = ({(1)q(¥3 — ¥), it follows that
any secure equilibrium profile in Z; has payoff profile of the form (1, ,1). Since
(1,1,1) <4 (1,0,1) and (1,1,1) <3 (1,0,1), to prove uniqueness it suffices to
show that player 1 and player 3 can fix strategies to ensure secure equilibrium
payoff profile (1,0, 1). Since Z1 = (1, 3))qv, (W1 A¥3A—Ws), consider the strategy
pair (o1, 03) such that against all player 2 strategies o2 and for all states s € Z7,
we have w(s, 01,02,03) € (U1 A W3 A —W5). The secure equilibrium strategy pair
(o7,0%) for player 1 and player 3 (along with any strategy oo for player 2) is
constructed as follows.

Assume-Guarantee Synthesis 271

1. The strategy o7 is as follows: player 1 plays o; and if player 3 deviates from
o3, then player 1 switches to a winning strategy for ¥s — W;. Such a strategy
exists since Z1 C Uy = (1) ¢(¥5 — ¥1).

2. The strategy o3 is as follows: player 3 plays o3 and if player 1 deviates from
o1, then player 3 switches to a winning strategy for W5. Such a strategy exists
since (3)¢(¥3) = S.

Hence objective of player 1 is always satisfied, given objective of player 3 is
satisfied. Thus player 3 has no incentive to deviate. Similarly, player 1 also has
no incentive to deviate. The result follows.

Part (3). By Theorem [Mlwe have S\ W = ((3))¢(¥3 A (—¥1 V —¥5)) and there is a
player 3 strategy o3 that satisfies W3 A(—W; VW) against all strategies of player 1
and player 2. Hence the equilibrium (1,1, 1) cannot exist in the complement set
of W, i.e., MS111(G) C W. We now show that in W there is a secure equilibrium
with payoff profile (1,1, 1). The following construction completes the proof.

1. In W N Uy, player 1 plays a winning strategy for objective ¥3 — W, and
player 2 plays a winning strategy for objective (W3 AW;) — Ws. Observe that
S\ Z1 = {(2)¢(—¥; V =5 V Wy), and hence such a winning strategy exists
for player 2.

2. In W N (Uy \ Uy), player 2 plays a winning strategy for objective W3 — Wy,
and player 1 plays a winning strategy for objective (¥o AW3) — ;. Observe
that S\ Zo = {(1)q(—%2 V %3 V ¥), and hence such a winning strategy
exists for player 1.

3. By Theorem [we have W \ U1 = (2,3)q(—¥1 A ¥3) and W \ Uy =
{(1,3)a (=¥ A W3). The strategy construction in W\ (U; U Us) is as fol-
lows: player 1 and player 2 play a strategy (o1, 02) to satisfy ¥3 AW, against
all strategies of player 3, and player 3 plays a winning strategy for ¥s; if
player 1 deviates, then player 2 and player 3 switches to a strategy (o2, 073)
such that against all strategies for player 1 the objective ¥3 A =¥ is satisfied;
and if player 2 deviates, then player 1 and player 3 switches to a strategy
(01,03) such that against all strategies for player 2 the objective W5 A Wy
is satisfied. Hence neither player 1 and nor player 2 has any incentive to
deviate according to the preference order <; and <, respectively.

Alternative characterization of winning secure equilibria. In order to obtain a
characterization of the set MS;111(G) in terms of strategies, we define retaliation
strategies following [4]. Given objectives Wy, Wy, and W3 for the three players,
and a state s € 5, the sets of retaliation strategies for players 1 and 2 at s are

Rel(s):{al € | Voo € X5. Vo3 € Eg.w(s,al,Ug,O'g)E((Wg /\WQ) — Wl)};
Reg(s):{dg € Xy | Yo, € Y. Vo3 € Eg.w(S,O'hO'Q,O'g)E((Wg /\Wl) — WQ)}

Theorem 3. Let G be a 3-player game graph G with the objectives Wy, Ws, and
W3 for the three players such that (3)c(Ws) = S. Let U = {s € S| Jo1 €
Rei(s). Joz2 € Rex(s). Yos € Xs. w(s,01,02,03) € (U3 — (U1 AWs))}. Then
U= MSlH(G).

272 K. Chatterjee and T.A. Henzinger

Proof. We first show that U C MS;11(G). For a state s € U, choose o1 € Req(s)
and o9 € Rey(s) such that for all o3 € X3, we have w(s, 01,02,03) € (W3 — (P A
W,)). Fixing the strategies o1 and o9 for players 1 and 2, and a winning strategy
for player 3, we obtain the secure equilibrium payoff profile (1, 1, 1). We now show
that MS111(G) C U. This follows from the proof of Theorem 21 In Theorem [2] we
proved that for all states s € (S\ (Z1UZ2)), we have Re;(s) # 0 and Rea(s) # 0;
and the winning secure strategies constructed for the set W = MSy11(G) are
witness strategies to prove that MSy11(G) C U.

Observe that for w-regular objectives, the winning secure strategies of
Theorem [3| are finite-memory strategies. The existence of finite-memory win-
ning secure strategies establishes the following theorem.

Theorem 4 (Game solution of assume-guarantee synthesis). Given two
processes Py = (X1,61) and Py = (X3,62), two specifications &1 for Py and
Dy for Py, and a start valuation vy € V, theAanswer to the assume-guarantee
synthesis problem is “Yes” iff (vo,3) € MS111(G) for the 3-player game graph G
with the objectives ¥ = [P1], W2 = [P2], and ¥s5 = Fair.

Ezample 3 (Assume-guarantee synthesis of mutual-exclusion protocol). We con-
sider the 8 alternatives C1-C8 of process P, and the corresponding spoiling
strategies for process P» and the scheduler to violate P;’s specification. We de-
note by [—] a switch between the two processes (decided by the scheduler).

C1 The spoiling strategies for process P, and the scheduler cause the following
sequence of updates:
Py: flag[1] :=true; turn:=2; [—];
Py: flag[2] :=true; turn:=1;
Py: enters the critical section by passing the guard C8: (since
(turn # 2)). After exiting its critical section, process P, chooses
the alternative C10 to enter the beginning of the main loop, sets
flag[2] :=true; turn:=1; and then the scheduler assigns the
turn to process P;, which cannot enter its critical section. The
scheduler then assigns turn to P» and then P, enters the critical
section by passing guard C8 and this sequence is repeated forever.
The same spoiling strategies work for choices C2, C3, C6 and C7.
C4 The spoiling strategies cause the following sequence of updates:
P,: flag[2] :=true; turn:=1; [—];
Py: flag[1] :=true; turn:=2; [—];
Py: enters the critical section by passing the guard C3: (since
(turn # 1)). After exiting its critical section, process P» continues
to choose the alternative C9 forever, and the scheduler alternates
turn between P; and Ps; and process P; cannot enter its critical
section.
The same spoiling strategies work for the choice C5.
C8 The spoiling strategies cause the following sequence of updates:

Assume-Guarantee Synthesis 273

P,: flag[2] :=true; turn:=1; [—];

Py: flag[1] :=true; turn:=2; [—];

Ps: while(flag[2]) nop;
Then process P, does not enter its critical section, and neither can process
P, enter. In this case P, cannot violate P;’s specification without violating
her own specification.

It follows from this case analysis that no alternatives except C8 for process P;
can witness a solution to the assume-guarantee synthesis problem. The alterna-
tive C8 for process P; and the symmetric alternative C6 for process P» provide
winning secure strategies for both processes. In this example, we considered
refinements without additional variables; but in general refinements can have
additional variables.

4 Abstraction-Based Co-synthesis

In Section [3] we provided game-based algorithms for the three formulations of
the co-synthesis problem. However, the state space of the game graph can be
very large, making an algorithmic analysis often impractical. In this section we
present sound proof rules (i.e., sufficient conditions) for deriving solutions to
the three co-synthesis problems from the analysis of simpler game graphs, which
abstracts the original game graph. We first review the appropriate notion of
game abstraction and the corresponding proof rules for the weak and classical
versions of co-synthesis. We then give proof rules for assume-guarantee synthesis
in the two special but common cases where the processes have safety and Biichi
objectives. In particular, we show that the solution of zero-sum games on simpler,
abstract game graphs is sufficient for solving a given assume-guarantee synthesis
problem: the winning strategies of two different abstract zero-sum games provide
winning secure strategies for the original non-zero-sum game.

Abstraction of game graphs. Let I C {1,2,3} be a set of players, and let J =
{1,2,3}\I. An I-abstraction for a 3-player game graph G = ((S, E), (S1, 52, S3))
consists of a 3-player game graph G4 = ((S4, E4), (S, 55, 54)) and a con-
cretization function v : S4 — 25\ () such that the following conditions hold.

1. The abstraction preserves the player structure: for all i € {1,2,3} and a €
SA we have vy(a) C S;.

2. The abstraction partitions the concrete state space: J,cg4 7(a) = S, and
for every s € S there is a unique a € S* such that s € y(a).

3. The edges for players in I are abstracted universally, and the edges for players
in J are abstracted existentially:

EA= {(a,b)|3Fiel.aeSA A VseE(a). It (D). (s,t) € E}
U {(a,b)|Fie J acSA A s €r(a). It €y(b). (s,t) € E}.
The abstraction function : S — S4 is defined such that s € vy(a(s)) for

all states s € S. For a play w = (so, s1, S2,...) in G, the abstraction a(w) =
(a(s0), a(s1), a(s2),...) is a play in G4,

274 K. Chatterjee and T.A. Henzinger

Abstraction of objectives. Given an objective ¥ on the concrete game graph G,
we define the following two objectives on the abstract game graph G4:

—existential abstraction: a(¥) = {a(w) | w € ¥};
—universal abstraction: (¥) = {7 | Vw € S¥. if T = a(w) then w € ¥}.

For the playersin I, the abstract objectives are obtained by universal abstraction,
and for the players in J, by existential abstraction.

Proof rules for weak and classical co-synthesis. The following proposition
states the basic principle behind proof rules for weak and classical co-synthesis.

Proposition 2. [7] Given a 3-player game graph G, a set I C {1,2,3} of play-
ers, an I-abstraction (GA,7), and an objective ¥, let A = (I)ga(B(¥)). Then
Y(4) € (I)a(¥).

Proof rules for assume-guarantee synthesis. We present proof rules for
assume-guarantee synthesis in two cases: for safety objectives, and for Biichi
objectives (which include reachability objectives as a special case).

Safety objectives. Given a set F' C S of states, the safety objective OF requires
that the set F' is never left. Formally, the safety objective OF contains all plays
(80,81, 82,...) such that s; € F' for all j > 0. Given safety objectives for players
1 and 2, it is immaterial whether the scheduler (player 3) is fair or not, because
if a safety objective is violated, then it is violated by a finite prefix of a play.
Hence, for simplicity, we assume that the objective of player 3 is trivial (i.e., the
set of all plays). The following theorem states that winning secure equilibrium
states in a game graph G can be derived from winning secure equilibrium states
in two simpler graphs, a {1}-abstraction Gf' and a {2}-abstraction G4'. The
winning secure strategies on the concrete graph can likewise be derived from the
winning secure strategies on the two abstract graphs.

Theorem 5. Let G be a 3-player game graph with two safety objectives ¥1 and
Wy for players 1 and 2, respectively. Let (Gi',v1) be a {1}-abstraction, and let
(G4, 72) be a {2}-abstraction. Let the objective for player 1 in G5 and G4 be
Br(¥1) and ax(¥,), respectively. Let the objective for player 2 in G5 and G%'
be a1 (W) and B2(Ps), respectively. Let the objective for player 3 in G, G, and
G%' be the set of all plays. Let Ay = MSy11(G)) and Ay = MSy11(G4). Then
(1 (A1) N72(A2)) € MS111(G).

The classical assume-guarantee rule for safety specifications [I] can be obtained
as a special case of Theorem 5 where all states are player-3 states (in this case,
player 3 is not only a scheduler, but also resolves all nondeterminism in the two
processes Py and Ps).

Biichi objectives. Given a set B C S of states, the Bichi objective OO B requires
that the set B is visited infinitely often. Formally, the Biichi objective OCB
contains all plays (so,s1,S2,...) such that s; € B for infinitely many j > 0.
The following theorem states that winning secure equilibrium states (and the

Assume-Guarantee Synthesis 275

corresponding winning secure strategies) in a game graph G can be derived
from a zero-sum analysis of three simpler graphs, a {1}-abstraction G{!, a {2}-
abstraction G3', and a {1, 2}-abstraction G1',.

Theorem 6. Let G be a 3-player game graph with two Biichi objectives Wy and
Uy for player 1 and player 2, respectively, and the objective Fair for player 3.
Let (G,71) be a {1}-abstraction, let (G4,7v2) be a {2}-abstraction, and let
(Git3,m.2) be a {1,2}-abstraction. Let

(Wep((ar(Fair) A ar(P2)) — Bi(¥1));
(2he ((az(Fair) A ax()) — B2(¥));
= (1, >>c;{2(0¢1,2(Fa'r) (Br2(¥1) A Br12(92)));

where U] = (W1 AOv1(A1)) and W) = (WoAOy(A2)). Then 1 2(As) C MS111(G).

1
2
3

References

1. R. Alur and T.A. Henzinger. Reactive modules. In Formal Methods in System
Design, 15:7-48, 1999.

2. R. Alur, T.A. Henzinger, O. Kupferman. Alternating-time temporal logic. Journal
of the ACM, 49:672-713, 2002.

3. K. Chatterjee and T.A. Henzinger. Semiperfect-information games. In FSTTCS 05,
LNCS 3821, pages 1-18. Springer, 2005.

4. K. Chatterjee, T.A. Henzinger, M. Jurdziniski. Games with secure equilibria. In
LICS’04, pages 160-169. IEEE, 2004.

5. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs’81, LNCS 131, pages
52—71. Spinger, 1982.

6. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC’82, pages
60-65. ACM, 1982.

7. T.A. Henzinger, R. Majumdar, F.Y.C. Mang, J.-F. Raskin. Abstract interpretation
of game properties. In SAS’00, LNCS 1824, pages 220-239. Springer, 2000.

8. P. Madhususan and P.S. Thiagarajan. Distributed controller synthesis for local
specifications. In ICALP’01, LNCS 2076, pages 396-407. Springer, 2001.

9. S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS’03, LNCS 2914,
pages 338-351. Springer, 2003.

10. C.H. Papadimitriou. Algorithms, games, and the internet. In STOC’01, pages
749-753. ACM, 2001.

11. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89,
pages 179-190. ACM, 1989.

12. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization, 25:206-230, 1987.

13. J.H. Reif. The complexity of 2-player games of incomplete information. Journal
of Computer and System Sciences, 29:274-301, 1984.

14. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3, pages 389-455. Springer, 1997.

Optimized L*-Based Assume-Guarantee
Reasoning*

Sagar Chaki' and Ofer Strichman?

1 Software Engineering Institute, Pittsburgh, USA
chaki@sei.cmu.edu
2 Information Systems Engineering, IE, Technion, Israel
ofers@ie.technion.ac.il

Abstract. In this paper, we suggest three optimizations to the L*-based
automated Assume-Guarantee reasoning algorithm for the compositional
verification of concurrent systems. First, we use each counterexample
from the model checker to supply multiple strings to L*, saving candi-
date queries. Second, we observe that in existing instances of this para-
digm, the learning algorithm is coupled weakly with the teacher. Thus,
the learner ignores completely the details about the internal structure of
the system and specification being verified, which are available already
to the teacher. We suggest an optimization that uses this information
in order to avoid many unnecessary — and expensive, since they involve
model checking — membership and candidate queries. Finally, and most
importantly, we develop a method for minimizing the alphabet used by
the assumption, which reduces the size of the assumption and the num-
ber of queries required to construct it. We present these three optimiza-
tions in the context of verifying trace containment for concurrent systems
composed of finite state machines. We have implemented our approach
and experimented with real-life examples. Our results exhibit an average
speedup of over 12 times due to the proposed improvements.

1 Introduction

Formal reasoning about concurrent programs is particularly hard due to the
number of reachable states in the overall system. In particular, the number
of such states can grow exponentially with each added component. Assume-
Guarantee (AG) is a method for compositional reasoning that can be helpful in
such cases. Consider a system with two components M; and Ms that need to
synchronize on a given set of shared actions, and a property ¢ that the system
should be verified against. In its simplest form, AG requires checking one of the
components, say M7, separately, while making some assumption on the behaviors
permitted by Ms. The assumption should then be discharged when checking Ms
in order to conclude the conformance of the product machine with the property.
This idea is formalized with the following AG rule:

* This research was supported by the Predictable Assembly from Certifiable Compo-
nents (PACC) initiative at the Software Engineering Institute, Pittsburgh, USA.

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 276 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimized L*-Based Assume-Guarantee Reasoning 277

AXMlj(p
My=< A

M, x My < o (AG-NC) (1)
where < stands for some conformance relatio. For trace containment, simula-
tion and some other known relations, AG-NC is a sound and complete rule. In
this paper, we consider the case in which M;, My and ¢ are non-deterministic
finite automata, and interpret < as the trace containment (i.e., language inclu-
sion) relation.

Recently, Cobleigh et al. proposed [I] a completely automatic method for find-
ing the assumption A, using Angluin’s L* algorithm [2]. L* constructs a minimal
Deterministic Finite Automaton (DFA) that accepts an unknown regular lan-
guage U. L* interacts iteratively with a Minimally Adequate Teacher (MAT).
In each iteration, L* queries the MAT about membership of strings in U and
whether the language of a specific candidate DFA is equal to U. The MAT is
expected to supply a “Yes/No” answer to both types of questions. It is also ex-
pected to provide a counterexample along with a negative answer to a question
of the latter type. L* then uses the counterexample to refine its candidate DFA
while enlarging it by at least one state. L* is guaranteed to terminate within no
more than n iterations, where n is the size of the minimal DFA accepting U.

In this paper we suggest three improvements to the automated AG procedure.
The first improvement is based on the observation that counterexamples can
sometimes be reused in the refinement process, which saves candidate queries.

The second improvement is based on the observation that the core L* al-
gorithm is completely unaware of the internal details of M;, My and . With
a simple analysis of these automata, most queries to the MAT can in fact be
avoided. Indeed, we suggest to allow the core L* procedure access to the inter-
nal structure of My, My and ¢. This leads to a tighter coupling between the L*
procedure and the MAT, and enables L* to make queries to the MAT in a more
intelligent manner. Since each MAT query incurs an expensive model checking
run, overall performance is improved considerably.

The last and most important improvement is based on the observation that
the alphabet of the assumption A is fixed conservatively to be the entire interface
alphabet between M; and ¢ on the one hand, and M5 on the other. While the
full interface alphabet is always sufficient, it is often possible to complete the ver-
ification successfully with a much smaller assumption alphabet. Since the overall
complexity of the procedure depends on the alphabet size, a smaller alphabet
can improve the overall performance. In other words, while L* guarantees the
minimality of the learned assumption DFA with respect to a given alphabet, our
improvement reduces the size of the alphabet itself, and hence also the size of
the learned DFA. The technique we present is based on an automated abstrac-
tion/refinement procedure: we start with the empty alphabet and keep refining it
based on an analysis of the counterexamples, using a pseudo-Boolean solver. The
procedure is guaranteed to terminate with a minimal assumption alphabet that

1 Clearly, for this rule to be effective, A x M; must be easier to compute than M; x Mo.

278 S. Chaki and O. Strichman

suffices to complete the overall verification. This technique effectively combines
the two paradigms of automated AG reasoning and abstraction-refinement.

Although our optimizations are presented in the context of a non-circular AG
rule, they are applicable for circular AG rules as well, although for lack of space
we do not cover this topic in this paper. We implemented our approach in the
CoMFORT [3] reasoning framework and experimented with a set of benchmarks
derived from real-life source code. The improvements reduce the overall number
of queries to the MAT and the size of the learned automaton. While individual
speedup factors exceeded 23, an average speedup of a factor of over 12 was
observed, as reported in Section [Gl

Related Work. The L* algorithm was developed originally by Angluin [2]. Most
learning-based AG implementations, including ours, use a more sophisticated
version of L* proposed by Rivest and Schapire [4]. Machine learning techniques
have been used in several contexts related to verification [BJ6I7U8I9]. The use of
L* for AG reasoning was first proposed by Cobleigh et al. [1]. A symbolic ver-
sion of this framework has also been developed by Alur et al. [I0]. The use of
learning for automated AG reasoning has also been investigated in the context of
simulation checking [T1] and deadlock detection [12]. The basic idea behind the
automated AG reasoning paradigm is to learn an assumption [I3], using L*, that
satisfies the two premises of AG-NC. The AG paradigm was proposed originally
by Pnueli [I4] and has since been explored (in manual/semi-automated forms)
widely. The third optimization we propose amounts to a form of counterexample-
guided abstraction refinement (CEGAR). The core ideas behind CEGAR were
proposed originally by Kurshan [I5], and CEGAR has since been used success-
fully for automated hardware [I6] and software [17] verification. An approach
similar to our third optimization was proposed independently by Gheorghiu et.
al [I8]. However, they use polynomial (greedy) heuristics aimed at minimizing
the alphabet size, whereas we find the optimal value, and hence we solve an
NP-hard problem.

2 Preliminaries

Let A and - denote the empty string and the concatenation operator respectively.
We use lower letters («, 3, etc.) to denote actions, and higher letters (o, 7, etc.)
to denote strings.

Definition 1 (Finite Automaton). A finite automaton (FA) is a 5-tuple
(S, Init, X, T, F) where (i) S is a finite set of states, (ii) Init C S is the set
of initial states, (iii) X is a finite alphabet of actions, (iv) T C S x X x S is the
transition relation, and (v) F C S is a set of accepting states.

For any FA M = (S, Init, X, T, F), we write s = s’ to mean (s, a, s') € T. Then
the function § is defined as follows: Va € X.Vs € S.6(a, s) = {s'|s = s'}. We

extend 0 to operate on strings and sets of states in the natural manner. Thus,
for any 0 € X¥* and S’ C S, §(0,5’) denotes the set of states of M reached

Optimized L*-Based Assume-Guarantee Reasoning 279

by simulating o on M starting from any s € S’. The language accepted by M,
denoted L(M), is defined as follows: L(M) = {0 € X* | §(o, Init) N F # (}.

Determinism. An FA M = (S, Init, X, T, F) is said to be a deterministic FA,
or DFA, if [Init| = 1 and Va € Y. Vs € S.|6(a,)| < 1. Also, M is said to be
complete if Vao € X.Vs € S.]6(av, s)| > 1. Thus, for a complete DFA, we have the
following: Voo € X.Vs € S.|6(e, s)| = 1. Unless otherwise mentioned, all DFA
we consider in the rest of this paper are also complete. It is well-known that a
language is regular iff it is accepted by some FA (or DFA, since FA and DFA
have the same accepting power). Also, every regular language is accepted by a
unique (up to isomorphism) minimal DFA.

Complementation. For any regular language L, over the alphabet X, we write
L to mean the language X* — L. If L is regular, then so is L. For any FA M we
write M to mean the (unique) minimal DFA accepting L£(M).

Projection. The projection of any string o over an alphabet X is denoted by
ol|x and defined inductively on the structure of o as follows: (i) A\|x= A, and
(ii) (a-0")|x=a- (¢']lx) if @ € X and ¢'|5 otherwise. The projection of any
regular language L on an alphabet X' is defined as: L|s= {o|x| o € L}. If L is
regular, so is L] 5. Finally, the projection M|y of any FA M on an alphabet 3
is the (unique) minimal DFA accepting the language L(M)] 5.

For the purpose of modeling systems with components that need to synchro-
nize, it is convenient to distinguish between local and global actions. Specifically,
local actions belong to the alphabet of a single component, while global actions
are shared between multiple components. As defined formally below, components
synchronize on global actions, and execute asynchronously on local actions.

Definition 2 (Parallel Composition). Given two finite automata M; =
(S1, Inity, X1, T1, F1) and My = (So, Inite, Yo, Ts, Fy), their parallel composi-
tion My x Mo is the FA (Sl X So, Imity x Inite, X7 U X9, T, Fy X FQ) such
that Vs1,s) € Si.Vsa,sh € Sa, (s1,82) — (sh,8h) iff for i € {1,2} either
a g X Ns;=s, orsiisg.

Trace Containment. For any FA M; and Ms, we write M; < M> to mean
L(My x M) = 0. A counterexample to M7 =< My is a string o € L(M; X My).

3 The L* Algorithm

The L* algorithm for learning DFAs was developed by Angluin [2] and later
improved by Rivest and Schapire [4]. In essence, L* learns an unknown regular
language U, over an alphabet X, by generating the minimal DFA that accepts
U. In order to learn U, L* requires “Yes/No” answers to two types of queries:

1. Membership query: for a string o € X* ‘isoc e U 7
2. Candidate query: for a DFA C, ‘is L(C) =U 7

280 S. Chaki and O. Strichman

If the answer to a candidate query is “No”, L* expects a counterexample string
o such that 0 € U — L(C) or 0 € L(C) — U. In the first case, we call o a
positive counterexample, because it should be added to L£(C). In the second
case, we call o a negative counterezample since it should be removed from £(C).
As mentioned before, L* uses the MAT to obtain answers to these queries.

Observation Table. L* builds an observation table (S, E,T') where: (i) S C X*
is the set of rows, (ii) £ C X* is the set of columns (or experiments), and (iii)
T:(SUS-X)x E— {0,1} is a function defined as follows:

1 s-ecU

Vse (SUS-X).Vee E.T(s,e) = {O otherwise

(2)

Consistency and Closure. For any s1, s € (SUS-Y), s1 and sq are equivalent
(denoted as sy = s2) if Ve € E.T(s1,e) = T(s2,€). A table is consistent if
Vs1,50 € S.81 # 82 = s1 # so. L* always maintains a consistent table. In
addition, a table is closed if Vs € S.Va € X.3s' € S.s' =s- a.

Candidate Construction. Given a closed and consistent table (S, E,T), L*
constructs a candidate DFA C' = (S, {\}, X, A, F) such that: (i) F = {s € S|
T(s,A\) =1}, and (ii) A = {(s,a,5") | 8 = s - a}. Note that C is deterministic
and complete since (S, E,T) is consistent and closed. Since a row corresponds
to a state of C, we use the terms “row” and “candidate state” synonymously.

=

@
N
@
w

R L >
— = e
S OO OO

Q

Q
@ R
O R O O >

Fig. 1. An Observation Table and the Corresponding Candidate DFA

Ezxample 1. Consider Figure[ll On the left is an observation table with the entries
being the T values. Let X' = {«, #}. From this table we see that {ez, o, a - ea, 5
ez, aq, ...} € U. On the right is the corresponding candidate DFA. ad

L* Step-By-Step. We now describe L* in more detail, using line numbers
from its algorithmic description in Figure 2l This conventional version of L* is
used currently in the context of automated AG reasoning. We also point out the
specific issues that are addressed by the improvements we propose later on in
this paper. Recall that A\ denotes the empty string. After the initialization at
Line 1, the table has one cell corresponding to (A, A). In the top-level loop, the
table entries are first computed (at Line 2) using membership queries.

Optimized L*-Based Assume-Guarantee Reasoning 281

Next, L* closes the table by trying to find (at Line 3) for each s € S, some
uncovered action « € X' such that Vs’ € S.s’ # s- . If such an uncovered action
« is found for some s € S, L* adds s -« to S at Line 4 and continues with the
closure process. Otherwise, it proceeds to the next Step. Note that each oo € X
is considered when attempting to find an uncovered action.

(1) let S=E={\}
loop {
(2) Update T using queries
while (S, E,T) is not closed {
(3) Find (s,a) € S x X such that Vs’ € S.s' Z s«
(4) Add s-ato S

}
Construct candidate DFA C from (S, E,T)

(5)

(6) Make the conjecture C

(7) if C is correct return C

(8) else Add e € X* that witnesses the counterexample to E

Fig. 2. The L* algorithm for learning an unknown regular language

Once the table is closed, L* constructs (at Line 5) a candidate DFA C us-
ing the procedure described previously. Next, at Line 6, L* conjectures that
L(C) = U via a candidate query. If the conjecture is wrong L* extracts from the
counterexample CE (returned by the MAT) a suffix e that, when added to E,
causes the table to cease being closed. The process of extracting the feedback
e has been presented elsewhere [4] and we do not describe it here. Once e has
been obtained, L* adds e to F and iterates the top-level loop by returning to
line 2. Note that since the table is no longer closed, the subsequent process of
closing it strictly increases the size of S. It can also be shown that the size of S
cannot exceed n, where n is number of states of the minimal DFA accepting U.
Therefore, the top-level loop of L* executes no more than n times.

Non-uniform Refinement. It is interesting to note that the feedback from
CE does not refine the candidate in the abstraction/refinement sense: refine-
ment here does not necessarily add/eliminate a positive/negative CFE; this oc-
curs eventually, but not necessarily in one step. Indeed, the first improvement
we propose leverages this observation to reduce the number of candidate queries.
It is also interesting to note that the refinement does not work in one direction:
it may remove strings that are in U or add strings that are not in U. The only
guarantee that we have is that in each step at least one state is added to the
candidate and that eventually L* learns U itself.

Complexity. Overall, the number of membership queries made by L* is O(kn?+
nlogm), where k = |X| is the size of the alphabet of U, and m is the length of
the longest counterexample to a candidate query returned by the MAT [4]. The

282 S. Chaki and O. Strichman

dominating fragment of this complexity is kn? which varies directly with the
size of Y. As noted before, the X used in the literature is sufficient, but often
unnecessarily large. The third improvement we propose is aimed at reducing the
number of membership queries by minimizing the size of X.

4 AG Reasoning with L*

In this section, we describe the key ideas behind the automated AG procedure
proposed by Cobleigh et al. [I]. We begin with a fact that we use later on.

Fact 1. For any FA My and My with alphabets X1 and Yo, L(M1 x Ms) # 0
Zﬁ do € £(M1)- O'J (21m22)€ [.:(MQ)J (Z1N35) -

Let us now restate AG-NC to reflect our implementation more accurately:

Ax (Myxg) <L
My =< A

(M1X()5)XM25J_ (3)

where | denotes a DFA accepting the empty language. The unknown language
to be learned is
U= L((M1x9)|x) (4)

over the alphabet X' = (X U X,) N Xy where ¥, Yy and X, are the alphabets
of My, My and ¢ respectwely@ The choice of U and X is 51gn1ﬁcant because,
by Fact [l the consequence of Eq. Bl does not hold iff the intersection between
U= L(M;x@)|s) and L(Mz]5) is non-empty. This situation is depicted in
Fig. Bla). Hence, if A is the DFA computed by L* such that £(A) = U, any
counterexample to the second premise My < A is guaranteed to be a real one.
However, in practice, the process terminates after learning U itself only in the
worst case. As we shall see, it usually terminates earlier by finding either a
counterexample to M7 X My =< ¢, or an assumption A that satisfies the two
premises of Eq. Bl This later case is depicted in Fig. Bi(b).

MAT Implementation. The answer to a membership query with a string o is
“Yes” iff o cannot be simulated on M; x @ (see Eq. H]). A candidate query with
some candidate A, on the other hand, is more complicated, and is described
step-wise as follows (for brevity, we omit a diagram and refer the reader to the
non-dashed portion of Figure HI):

Step 1. Use model checking to verify that A satisfies the first premise of Eq. Bl
If the verification of the first premise fails, obtain a counterexample trace m €
L(A x My x @) and proceed to Step 2. Otherwise, go to Step 3.

2 Note that we do not compute U directly because complementing Mj, a non-
deterministic automaton, is typically intractable.

Optimized L*-Based Assume-Guarantee Reasoning 283

(© \/ (@)

Fig. 3. Different L* scenarios. The gray area represents the candidate assumption A.

Step 2. Denote 7| 5 by 7’. Check via simulation if 7’ € £L(Ms] 5). If so, then by
Fact D L(Mix@ x My) # 0 (i.e., My x My £ ¢) and the algorithm terminates.
This situation is depicted in Fig. Blc). Otherwise #’ € L(A) — U is a negative
counterexample, as depicted in Fig. Bl(d). Control is returned to L* with #'.

Step 3. At this point A is known to satisfy the first premise. Proceed to model
check the second premise. If Ms < A holds as well, then by Eq. [conclude that
My x My < ¢ and terminate. This possibility was already shown in Fig. B(b).
Otherwise obtain a counterexample 7 € L(M3 x A) and proceed to Step 4.

Step 4. Once again denote 7 |x by 7’. Check if #’ € L((M;x@)]|s). If so,
then by Fact [0l L(M71x@ x M) # 0 (i.e., My x My A ¢) and the algorithm
terminates. This scenario is depicted in Fig. Ble). Otherwise 7/ € U — L(A) is a
positive counterexample, as depicted in Fig. B(f) and we return to L* with 7'
Note that Steps 2 and 4 above are duals obtained by interchanging M; x ¢
with Ms and U with £(A). Also, note that Fact [l could be applied in Steps 2
and 4 above only because X' = (X U X,) N Xs. In the next section, we propose

284 S. Chaki and O. Strichman

an improvement that allows X' to be varied. Consequently, we also modify the pro-
cedure for answering candidate queries so that Fact[Ilis used only in a valid manner.

5 Optimized L*-Based AG Reasoning

In this section we list three improvements to the algorithm described in Section[dl
The first two improvements reduce the number of candidate and membership
queries respectively. The third improvement is aimed at completing the verifica-
tion process using an assumption alphabet that is smaller than (X7 U X,) N Xs.

5.1 Reusing Counterexamples

Recall from Section [3] that every candidate query counterexample 7 returned to
L* is used to find a suffix that makes the table not closed, and hence adds at least
one state (row) to the current candidate C' (observation table). Let C’ denote
the new candidate constructed in the next iteration of the top-level loop (see
Figure 2)). We say that C’ is obtained by refining C' on 7. However, the refine-
ment process does not guarantee the addition/elimination of a positive/negative
counterexample from C’. Thus, a negative counterexample 7 € L(C) — U may
still be accepted by C’, and a positive counterexample 7 € U — L(C) may still
be rejected by C'. This leads naturally to the idea of reusing counterexamples.
Specifically, for every candidate C” obtained by refining on a negative counterex-
ample 7, we check, via simulation, whether = € L£(C"). If this is the case, we
repeat the refinement process on C’ using 7 instead of performing a candidate
query with C’. The same idea is applied to positive counterexamples as well.
Thus, if we find that = ¢ £(C") for a positive counterexample , then 7 is used
to further refine C’. This optimization reduces the number of candidate queries.

5.2 Selective Membership Queries

Recall the operation of closing the table (see Lines 3 and 4 of Figure 2]) in L*.
For every row s added to S, L* must compute T for every possible extension of
s by a single action. Thus L* must decide if s-«a-e € U for each a« € X and
e € E — atotal of |X|-|E| membership queries. To see how a membership query
is answered, for any o € X*, let Sim(o) be the set of states of My x ¢ reached
by simulating o from an initial state of M; x @ and by treating actions not in X/
as € (i.e., e-transitions are allowed where the actions are local to M; x@). Then,
o € U iff Sim(o) does not contain an accepting state of My X @.

Let us return to the problem of deciding if s-«-e € U. Let En(s) = {d’ €
X | 8(c/, Sim(s)) # 0} be the set of enabled actions from Sim(s) in Mi x @.
Now, for any a € En(s), Sim(s-«-e) =) and hence s - « - e is guaranteed to
belong to U. This observation leads to our second improvement. Specifically, for
every s added to S, we first compute En(s). Note that En(s) is computed by
simulating s|x, on M; and s|yx, on ¢ separately, without composing M; and
. We then make membership queries with s- « - e, but only for a € En(s). For
all a ¢ En(s) we directly set T'(s - a,e) = 1 since we know that in this case

Optimized L*-Based Assume-Guarantee Reasoning 285

s-a-e € U. The motivation behind this optimization is that En(s) is usually
much smaller that Y for any s. The actual improvement in performance due to
this tactic depends on the relative sizes of En(s) and X for the different s € S.

5.3 Minimizing the Assumption Alphabet

As mentioned before, existing automated AG procedures use a constant assump-
tion alphabet X' = (X; U X,) N X,. There may exist, however, an assumption A
over a smaller alphabet Y. C X' that satisfies the two premises of Eq. Bl Since
Eq. Blis sound, the existence of such an A would still imply that M; x My < .
However, recall that the number of L* membership queries varies directly with
the alphabet size. Therefore, the benefit, in the context of learning A, is that a
smaller alphabet leads to fewer membership queries.

In this section, we propose an abstraction-refinement scheme for building an
assumption over a minimal alphabet. During our experiments, this improvement
led to a 6 times reduction in the size of the assumption alphabet. The main prob-
lem with changing X' is of course that AG-NC is no longer complete. Specifically,
if Yo C X, then there might not exist any assumption A over X¢ that satisfies
the two premises of AG-NC even though the conclusion of AG-NC holds. The
following theorem characterizes this phenomenon precisely.

Theorem 1 (Incompleteness of AG-NC). Suppose there exists a stringm and
an alphabet X such that: (INC) w|s,€ L(M1%x@)]s.) and] s, € L(M2]s,).
Then no assumption A over Yo satisfies the two premises of AG-NC.

Proof. Suppose there exists a 7 satisfying INC and an A over X¢ satisfying the
two premises of AG-NC. This leads to a contradiction as follows:

— Case I: w|5,€ L(A). Since A satisfies the first premise of AG-NC, we have
oo L((M1x@)| 5.), a contradiction with INC.

— Case 2. 7]x.¢ L(A). Hence 7 |x.€ L(A). Since A satisfies the second
premise of AG-NC, we have 7| 5. & L(M2|x.), again contradicting INC. O

We say that an alphabet X is incomplete if Yo # 3 and there exists a trace
7 satisfying condition INC above. Therefore, whenever we come across a trace m
that satisfies INC, unless Yo = Y, we know that the current X is incomplete
and must be refined. We now describe our overall procedure which incorporates
testing X'¢ for incompleteness and refining an incomplete X'« appropriately.

Detecting Incompleteness. Our optimized automated AG procedure is de-
picted in Fig.[dl Initially X, = @B. Let us write 7 and 7 to mean 7| s and 7| o
respectively. The process continues as in Section] until one of the following two
scenarios occur while answering a candidate query:

— Scenario 1: We reach Step 2 with a trace m € L(A x M; x@). Note that this
implies 7’ € L((M1 X @)|x.). Now we first check if 7’ € L(Ms|x,). If not,

3 We could also start with X, = X, since it is very unlikely that ¢ can be proven or
disproven without controlling the actions that define it.

286 S. Chaki and O. Strichman

iReﬁnement: i
G Update X, T T
: ””””” : A[]X]\/j2ﬁ\0
| Negative counterexample: m € L(A) — U !
Y ¢ .N !
e L* L» ij\jljw N7T 77/5]\12]20 :N Y

lY Y | Repeat check |
' with X for Y¢ |

Mo < A T T =< Myx 3|5 yand 7 for
2 2 | 7= o]

¢Y N
My x My < ¢

Positive counterexample: 7 € U — L(A)

Fig.4. Generalized AG with L*, with an abstraction-refinement loop (added with
dashed lines) based on the assumption alphabet X, C X. Strings 7' and 7" denote
7| 5 and 7|z respectively.

we return 7’ as a negative counterexample to L* exactly as in Section [l
However, if 7’ € £L(M2] 5.), then 7 satisfies the condition INC of Theorem/[I]
and hence Yo is incomplete. Instead of refining Y- at this point, we first
check if 7" € L(Msy|x). If so, then as in Section @ by a valid application
of Fact M, My x Ms A ¢ and the algorithm terminates. Otherwise, if 7" &
L(Ms]5), we refine Yc.

— Scenario 2: We reach Step 4 with 7 € L(Mz x A). Note that this implies
' € L(Mz]|x.). We first check if 7’ € L((M1x@)]|x.). If not, we return
7' as a positive counterexample to L* exactly as in Section @ However,
if 7 € L(M1x@)|s.), then 7 satisfies INC, and hence by Theorem [I]
Yo is incomplete. Instead of refining X at this point, we first check if
7" € L((M1x@)|x). If so, then as in Section [by a valid application of
Fact [l My x My A ¢ and we terminate. Otherwise, if 7" & L((M1x@)|x),
we refine Y.

Note that the checks involving 7" in the two scenarios above correspond to
the concretization attempts in a standard CEGAR loop. Also, Scenarios 1 and 2
are duals (as in the case of Steps 2 and 4 in Section H]) obtained by interchanging
My x@ with My and U with £(A). In essence, while solving a candidate query, an
incomplete X'¢ results in a trace (specifically, 7 above) that satisfies INC and leads
neither to an actual counterexample of M x My < ¢, nor to a counterexample to
the candidate query being solved. In accordance with the CEGAR terminology,
we refer to such traces as spurious counterexamples and use them collectively to
refine Yo as described next. In the rest of this section, all counterexamples we
mention are spurious unless otherwise specified.

Optimized L*-Based Assume-Guarantee Reasoning 287

Refining the Assumption Alphabet. A counterexample arising from Sce-
nario 1 above is said to be negative. Otherwise, it arises from Scenario 2 and is
said to be positive. Our description that follows unifies the treatment of these
two types of counterexamples, with the help of a common notation for M; x @
and M. Specifically, let

M — M;x¢@ 7 is positive
T Mo 7 is negative

We say that an alphabet X’ eliminates a counterexample 7, and denote this with
Elim(m, X'), if 7| 5o L(M ™|). Therefore, any counterexample 7 is eliminated
if we choose X¢ such that Elim(m, ¥¢) holds since 7 no longer satisfies the
condition INC. Our goal, however, is to find a minimal alphabet Y¢ with this
property. It turns out that finding such an alphabet is computationally hard.

Theorem 2. Finding a minimal eliminating alphabet is NP-hard in |X)|.

Proof. The proof relies on a reduction from the minimal hitting set problem.

Minimal Hitting Set. A Minimal Hitting Set (MHS) problem is a pair (U, T)
where U is a finite set and 7' C 2Y is a finite set of subsets of U. A solution to
(U,T) is a minimal X C U such that VI" € T. X NT" # . It is well-known that
MHS is NP-complete in |U|.

Now we reduce MHS to finding a minimal eliminating alphabet. Let (U,T)
be any MHS problem and let < be a strict order imposed on the elements of
U. Consider the following problem P of finding a minimal eliminating alphabet.
First, let) = U. Next, for each T € T we introduce a counterexample 7(T")
obtained by arranging the elements of U according to <, repeating each element
of TV twice and the remaining elements of U just once. For example suppose
U = {a,b,c,d,e} such that a < b < ¢ < d < e. Then for T' = {b,d,e} we
introduce the counterexample 7(7") = a-b-b-c-d-d-e-e. Also, for each
counterexample 7(7T”) introduced, let M (m(T")) accept a single string obtained
by arranging the elements of U according to <, repeating each element of U
just once. Thus, for the example U above, M (w(T")) accepts the single string
a-b-c-d-e.

Let us first show the following result: for any 7" € T and any X C U, XNT"' #
0 iff Elim(m(T"), X). In other words, X NT" # 0 iff n(T")|x& LM (7(T"))] x).
Indeed suppose that some o« € X NT". Then w(T’)] x contains two consecutive
occurrences of o and hence cannot be accepted by M (7(T"))| x. By the converse
implication, if M (7(T"))] x does not accept m(T")| x, then 7(T’)] x must contain
two consecutive occurrences of some action a. But then « € X NT" and hence
X NT’ # (). The above result implies immediately that any solution to the MHS
problem (U, T) is also a minimal eliminating alphabet for P. Also, the reduction
from (U, T) to P described above can be performed using logarithmic space in
|U| + |T). Finally, |X| = |U|, which completes our proof. O

As we just proved, finding the minimal eliminating alphabet is NP-hard in |X].
Yet, since | X| is relatively small, this problem can still be feasible in practice (as

288 S. Chaki and O. Strichman

our experiments have shown: see Section [B]). We propose a solution based on a
reduction to Pseudo-Boolean constraints. Pseudo-Boolean constraints have the
same modeling power as 0-1 ILP, but solvers for this logic are typically based on
adapting SAT engines for linear constraints over Boolean variables, and geared
towards problems with relatively few linear constraints (and a linear objective
function) and constraints in CNF.

Optimal Refinement. Let IT be the set of all (positive and negative) counterex-
amples seen so far. We wish to find a minimal X¢ such that: Vrr € ILElim(7, X¢).
To this end, we formulate and solve a Pseudo-Boolean constraint problem with
an objective function stating that we seek a solution which minimizes the cho-
sen set of actions. The set of constraints of the problem is @ = J, . @(7). In
essence, if M!™ is the minimal DFA accepting {n}, then &(7) represents sym-
bolically the states reachable in M x M (™) taking into account all possible
values of YX¢. Henceforth, we continue to use square brackets when referring to
elements of M and regular parenthesis when referring to elements of M (™).

We now define () formally. Let M[™ = (SI7] [n4tl™] =] 7l Flrl) and
M = (8™ Init) £ 7 F@), Let 6171 and 6 be the § functions of
M!™ and M) respectively. We define a state variable of the form (s,t) for
each s € Sl and ¢t € S(™). Intuitively, the variable (s,t) indicates whether the
product state (s,t) is reachable in M!™ x M (™). We also define a choice variable
s(a) for each action a € ¥, indicating whether « is selected to be included in
Yc. Now, @(m) consists of the following clauses:

Initialization and Acceptance: Every initial and no accepting state is reachable:
Vs € Init™. vt € Init™. (s,1) Vs e FIrl, vt € F(M, —(s,1)
Shared Actions: Successors depend on whether an action is selected or not:

Va € X.Vs € ST vs € 61 (a, s) .Vt € S Wt € 60 (a,t). (s,t) = (s, 1)
Va € X.Vs e ST .V € 6l (a,s) .Vt € S . =s(a) A(s,t) = (5, 1)
Va € X.Vs e SIT.vt e S vt € 60 (a,t) . ms(a) A (s,t) = (s,1)

Local Actions: Asynchronous interleaving:

Va € X7 — 3. Vs € SI7 Vs’ € 17l(a,s) .Vt € ST, (5,1) = (5, 1)
Va e XM — 2 .vs e SiT.vt € S vt € 6 (a,t) . (s,t) = (s,1)

As mentioned before, the global set of constraints @ is obtained by collecting
together the constraints in each @(w). Observe that any solution v to @ has
the following property. Let Yo = {a | v(s(a)) = 1}. Then we have Vr €
ILL(M!™) 5.)x (M™]5.)) = 0. But since L(M™]) = {n}, the above statement
is equivalent to Vrr € IT. (r]s.) € L(M(™]x.), which is further equivalent to
vV € II. Elim(m, Y¢). Thus, Y¢ eliminates all counterexamples. Finally, since
we want the minimal such Y&, we minimize the number of chosen actions via
the following objective function: min) . 5. s(a).

Optimized L*-Based Assume-Guarantee Reasoning 289

O O O,
My x@ $@L@L

Fig. 5. A positive counterexample m and M(™ = M; x @

Ezxample 2. Consider Fig. Bl in which there is one counterexample 7, and an FA
M = My x @ on which 7 can be simulated if ¥. = (. The state variables are
(si,t;) for 4,5 € [0..2] and the choice variables are s(a), s(3). The constraints
are:

Initialization : (s, to) Acceptance : —(sa,t2)
SharedActions : (sg,t1) — (s1,t2) (s1,t0) — (s2,t1)
(s0,t0) A =s(a) — (s1,t0) (s1,t0) A =s(B) — (s2,10)
(80,t1) A =s(a) — (s1,t1) (s1,t1) A=s(B) — (s2,11)
(80,t2) A =s(a) — (s1,t2) (51,t2) A =s(B) — (s2,12)
(80,t0) A =s(B) — (0, t1) (80,t1) A =s(a) — (s0,t2)
(51,%0) A s(B) — (s1,t1) (51,t1) A =s(a) — (s1,t2)
(52,%0) A 2s(B) — (s2,t1) (52,t1) A =s(a) — (s2,t2)

Since there are no local actions, these are all the constraints. The objective is to
minimize s(a) + s(§). The optimal solution is s(a) = s(8) = 1, corresponding
to the fact that both actions need to be in X« in order to eliminate . a

6 Experiments

We implemented our technique in COMFORT and experimented with a set of
benchmarks derived from real-life source code. All our experiments were carried
out on quad 2.4 GHz machine with 4 GB RAM running RedHat Linux 9. We
used PBS version 2.1H to solve the Pseudo-Boolean constraints. The benchmarks
were derived from the source code of OpenSSL version 0.9.6¢. Specifically, we
used the code that implements the handshake between a client and a server
at the beginning of an SSL session. We designed a suite of 10 examples, each
aiming a specific property (involving a sequence of message-passing events) that
a correct handshake should exhibit. For instance, the first example (SSL-1) was
aimed at verifying that a handshake is always initiated by a client and never by
a server.

The experiments were aimed at evaluating our proposed improvements sepa-
rately, and in conjunction with each other in the context of AG-NC. The results
are described in Figure [l The columns labeled Mem@Q and CandQ contain the
total number of membership and candidate queries respectively. The columns
labeled with T; and —T; contain results with/without the i*" improvement for

4 http://www.eecs.umich.edu/~faloul/Tools/pbs

290 S. Chaki and O. Strichman

Name CandQ MemQ Alph Time =T} Time T
=15 T —T5 T

=T Ty T T ST T3 —Ts Tz =13 Ts T3 T3 13 Ts
SSL-1 2.2 2.0 375 4.5 12 1 254 19.7 12.3 20.0 23.8 20.1 10.5 20.5
SSL-2 5.0 5.2 101.5 11.5 12 31.5 40.0 12.6 30.0 32.4 44.6 13.7 30.2
SSL-3 8.5 7.5 163.0 28.0 12 43.8 49.1 14.5 35.3 456 48.9 15.6 35.5
SSL-4 13.0 10.5 248.0 56.5 12 63.0 67.5 17.4 58.1 61.5 67.7 18.6 48.4
SSL-5 3.2 3.0 73.0 9.5 12 33.8 22.3 13.6 24.1 36.2 22.2 13.8 22.2
SSL-6 6.8 7.2 252.0 36.5 12 102.8 30.6 24.2 29.0 102.2 43.3 23.1 29.8
SSL-7 9.8 8.0 328.8 52.5 12 139.9 44.4 27.8 43.9 138.2 38.6 28.2 40.6
SSL-8 15.0 13.0 443.0 77.5 12 183.3 73.6 37.1 67.9 184.0 73.2 35.8 64.2
SSL-9 23.5 18.2 568.0 109.5 12 234.1 120.5 44.1 133.7 236.2 133.4 41.0 109.3
SSL-10 25.5 22.0 689.5 128.5 12 293.9 188.6 48.4 168.1 297.0 179.9 45.9 169.7
Avg. 10.8 9.2 290.0 51.0 12 115.1 65.6 25.2 61.0 115.7 67.2 24.6 57.1

N WWWNNRFE & BB

Fig. 6. Experimental Results for Non-Circular Rule AG-NC

i € {1,2,3}. The row labeled “Avg.” contains the arithmetic mean for the rest
of the column. Best figures are highlighted. Note that entries under MemQ and
CandQ are fractional since they represent the average over the four possible val-
ues of the remaining two improvements. Specifically, these are improvements 2
and 3 for CandQ, and improvements 1 and 3 for MemQ.

We observe that the improvements lead to the expected results in terms of
reducing the number of queries and the size of assumption alphabets. The second
and third improvements also lead to significant reductions in overall verification
time, by a factor of over 12 on an average. Finally, even though the first im-
provement entails fewer candidate queries, it is practically ineffective for reducing
overall verification time.

References

1. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for
compositional verification. In: Proc. of TACAS. (2003)

2. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation (2) (1987)

3. Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The ComFoRT Reasoning Frame-
work. In: Proc. of CAV. (2005)

4. Rivest, R.L., Schapire, R.E.: Inference of Finite Automata Using Homing Se-
quences. Information and Computation (2) (1993)

5. Peled, D., Vardi, M., Yannakakis, M.: Black box checking. In: Proc. of FORTE.
(1999)

6. Groce, A., Peled, D., Yannakakis, M.: Adaptive Model Checking. In: Proc. of
TACAS. (2002)

7. Alur, R., Cerny, P., Gupta, G., Madhusudan, P., Nam, W., Srivastava, A.: Synthesis
of Interface Specifications for Java Classes. In: POPL. (2005)

8. Habermehl, P., Vojnar, T.: Regular model checking using inference of regular
languages. In: Proc. of INFINITY. (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Optimized L*-Based Assume-Guarantee Reasoning 291

Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. In: Proc. of ICSE. (1999)
Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Proc. of CAV. (2005)

Chaki, S., Clarke, E., Sinha, N., Thati, P.. Automated Assume-Guarantee Rea-
soning for Simulation Conformance. In: Proc. of CAV. (2005)

Chaki, S., Sinha, N.: Assume-guarantee reasoning for deadlock. In: Proc. of FM-
CAD. (2006)

Giannakopoulou, D., Pasareanu, C., Barringer, H.: Assumption Generation for
Software Component Verification. In: Proc. of ASE. (2002)

Pnueli, A.: In Transition from Global to Modular Temporal Reasoning About
Programs. Logics and Models of Concurrent Systems (1985)

Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press (1994)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of the ACM (JACM)
(5) (2003)

Ball, T., Rajamani, S.: Generating Abstract Explanations of Spurious Counterex-
amples in C Programs. Technical Report MSR-TR-2002-09, Microsoft (2002)
Gheorghiu, M., Giannakopoulou, D., Pasareanu, C.: Refining Interface Alphabets
for Compositional Verification. In: Proc. of TACAS. (2007)

Refining Interface Alphabets for Compositional
Verification

Mihaela Gheorghiu', Dimitra Giannakopoulou?, and Corina S. Pisdreanu?

! Department of Computer Science, University of Toronto,
Toronto, ON MS5S 3G4, Canada
mg@cs.toronto.edu
2 RIACS and QSS, NASA Ames Research Center,
Moffett Field, CA 94035, USA
{dimitra,pcorina}l@email.arc.nasa.gov

Abstract. Techniques for learning automata have been adapted to automatically
infer assumptions in assume-guarantee compositional verification. Learning, in
this context, produces assumptions and modifies them using counterexamples
obtained by model checking components separately. In this process, the inter-
face alphabets between components, that constitute the alphabets of the assump-
tion automata, are fixed: they include all actions through which the components
communicate. This paper introduces alphabet refinement, a novel technique that
extends the assumption learning process to also infer interface alphabets. The
technique starts with only a subset of the interface alphabet and adds actions to it
as necessary until a given property is shown to hold or to be violated in the sys-
tem. Actions to be added are discovered by counterexample analysis. We show
experimentally that alphabet refinement improves the current learning algorithms
and makes compositional verification by learning assumptions more scalable than
non-compositional verification.

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent soft-
ware. Given a finite model of a system and of a required property, model checking
determines automatically whether the property is satisfied by the system. The limita-
tion of this approach, known as the “state-explosion” problem [9], is that it needs to
explore all the system states, which may be intractable for realistic systems.

Compositional verification addresses state explosion by a “divide and conquer” ap-
proach: properties of the system are decomposed into properties of its components and
each component is then checked separately. In checking components individually, one
needs to incorporate some knowledge of the contexts in which the components are ex-
pected to operate correctly. Assume-guarantee reasoning [18123]] addresses this issue
by introducing assumptions that capture the expectations of a component from its envi-
ronment. Assumptions have traditionally been defined manually, which has limited the
practical impact of assume-guarantee reasoning.

Recent work [12l5]] has proposed a framework based on learning that fully auto-
mates assume-guarantee model checking of safety properties. Since then, several sim-
ilar frameworks have been presented [3121125]. To check that a system consisting of

O. Grumberg and M. Huth (Eds.): TACAS 2007, LNCS 4424, pp. 292 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Refining Interface Alphabets for Compositional Verification 293

components M; and M, satisfies a safety property P, the framework automatically
guesses and refines assumptions for one of the components to satisfy P, which it then
tries to discharge on the other component. The approach is guaranteed to terminate, sta-
ting that the property holds for the system, or returning a counterexample if the property
is violated.

Compositional techniques have been shown particularly effective for well-structured
systems that have small interfaces between components [[7U15]. Interfaces consist of all
communication points through which the components may influence each other’s be-
havior. In the learning framework of [[12] the alphabet of the assumption automata being
built includes all the actions in the component interface. However, in a case study pre-
sented in [22], we observed that a smaller alphabet was sufficient to prove the property.
This smaller alphabet was determined through manual inspection and with it, assume-
guarantee reasoning achieves orders of magnitude improvement over monolithic (i.e.,
non-compositional) model checking [22].

Motivated by the successful use of a smaller assumption alphabet in learning, we
investigate here whether we can automate the process of discovering a smaller alphabet
that is sufficient for checking the desired properties. Smaller alphabet means smaller
interface between components, which may lead to smaller assumptions, and hence to
smaller verification problems. We propose a novel technique called alphabet refinement
that extends the learning framework to start with a small subset of the interface alphabet
and to add actions into it as necessary until a required property is shown to hold or to
be violated in the system. Actions to be added are discovered by analysis of the coun-
terexamples obtained from model checking the components. We study the properties of
alphabet refinement and show experimentally that it leads to time and memory savings
as compared to the original learning framework [[12] and monolithic model checking.
The algorithm has been implemented within the LTSA model checking tool [20].

The algorithm is applicable to and may benefit any of the previous learning-based
approaches [3121125]; it may also benefit other compositional analysis techniques. Com-
positional Reachability Analysis (CRA), for example, computes abstractions of com-
ponent behaviors based on their interfaces. In the context of property checking [7119],
smaller interfaces may result in more compact abstractions, leading to smaller state
spaces when components are put together.

The rest of the paper is organized as follows. Sec. 3| presents a motivating exam-
ple. Sec.] summarizes the original learning framework from [12]. Sec. [presents the
main algorithm for interface alphabet refinement. Sec. [f] discusses properties and Sec.[7]
provides an experimental evaluation of the proposed algorithm. Sec. [B] surveys some
related work and Sec. [9] concludes the paper. In the next section we review the main
ingredients of the LTSA tool and the L* learning algorithm.

2 Background

Labeled Transition Systems (LTSs). LTSA is an explicit-state model checker that an-
alyzes finite-state systems modeled as labeled transition systems (LTSs). Let A be the
universal set of observable actions and let 7 denote a special action that is unobservable.

294 M. Gheorghiu, D. Giannakopoulou, and C.S. Pasédreanu

clienty . grant

P:
Client;: client;.request client;..grant client;. client; .grant
. ’ useResource
client;.deny client; .cancel
client;.cancel client, .cancel

Fig. 1. Example LTS for a client (left) and a mutual exclusion property (right)

An LTS M is a tuple (@, aM, 6, qo), where: @ is a finite non-empty set of states;
aM C Aisasetof observable actions called the alphabet of M ;6 C QX (aMU{7})x
@ is a transition relation, and qq is the initial state. An LTS M is non-deterministic
if it contains 7-transitions or if 3(q, a,q’), (¢,a,q”) € & such that ¢ # ¢”. Other-
wise, M 1is deterministic. We use 7 to denote a special error state that has no out-
going transitions, and IT to denote the LTS ({n}, 4,0, 7). Let M = (Q,aM, d, qo)
and M’ = (Q',aM’, 8, q}). We say that M transits into M’ with action a, denoted
M % M, if and only if (go,a,q}) € ¢ and either Q = Q',aM = aM’,and § = &
for g{, # m, or, in the special case where ¢, = 7w, M’ = II.

Consider a simple client-server application (from [22])). It consists of a server com-
ponent and two identical client components that communicate through shared actions.
Each client sends requests for reservations to use a common resource, waits for the
server to grant the reservation, uses the resource, and then cancels the reservation. For
example, the LTS of a client is shown in Fig. [Tl (left), where ¢ = 1, 2. The server can
grant or deny a request, ensuring that the resource is used only by one client at a time
(the LTS of the server is shown in [14]).

Parallel Composition. Parallel composition “||” is a commutative and associative op-
erator such that: given LTSs M; = (Q', aMi, 6%, ¢f) and My = (Q%, aMs, 62, ¢3),
My || My is II if either one of My, My is II. Otherwise, M7 || My is an LTS
M = (Q,aM, b, q) where Q = Q' x Q% qo = (¢3,¢), oM = aM; U aMs, and §
is defined as follows (the symmetric version also applies):

My % M, a ¢ aM, My % M, My % My a#1
My || My = M || M, My || My = My || M}

Traces. A frace t of an LTS M is a sequence of observable actions starting from the
initial state and obeying the transition relation. The set of all traces of M is called the
language of M, denoted L£(M). Any trace ¢ may also be viewed as an LTS, which
we call a trace LTS; its language consists of ¢ and its prefixes. We denote by ¢ both a
trace and its trace LTS; the meaning should be clear from the context. For) C A, we
denote by t| x; the trace obtained by removing from ¢ all occurrences of actions a ¢ X.
Similarly, M | 5 is defined to be an LTS over alphabet 3’ which is obtained from M by
renaming to 7 all the transitions labeled with actions that are not in Y. Let ¢, t’ be two
traces. Let A, A’ be the sets of actions occurring in ¢, ¢/, respectively. By the symmetric
difference of t and t’ we mean the symmetric difference of sets A and A’.

Safety properties. We call a deterministic LTS not containing 7 a safety LTS (any non-
deterministic LTS can be made deterministic with the standard algorithm for automata).

Refining Interface Alphabets for Compositional Verification 295

client; .grant

A client; .grant

request client; .cancel

client; .cancel

grant
Clients deny Server

clienfjcancel client; .grant
cancel client; .grant client; .cancel
client; .cancel client; .cancel

Fig. 2. Client-Server Example: complete interface (left) and derived assumption with alphabet
smaller than complete interface alphabet (right).

A safety property P is specified as a safety LTS whose language £(P) defines the set
of acceptable behaviors over a.P. For example, the mutual exclusion property in Fig.[I]
(right) captures the desired behaviour of the client-server application discussed earlier.

An LTS M satisfies P, denoted M = P, iff Vo € M : o|,p€ L(P). For checking
a property P, its safety LTS is completed by adding error state 7 and transitions on all
the missing outgoing actions from all states into 7; the resulting LTS is denoted by F,,,.
LTSA checks M |= P by computing M || P.,, and checking if 7 is reachable in the
resulting LTS.

Assume-guarantee reasoning. In the assume-guarantee paradigm a formula is a triple
(A)M (P), where M is a component, P is a property, and A is an assumption about M’s
environment. The formula is true if whenever M is part of a system satisfying A, then
the system must also guarantee P. In LTSA, checking (A) M (P) reduces to checking
A || M = P. The simplest assume-guarantee proof rule shows that if (A)M;(P) and
(true) M2 (A) hold, then (true) M, || M2(P) also holds:

(Premise 1) (A)M;(P)
(Premise 2) (frue) My(A)
(true) M || Mo (P)

Coming up with appropriate assumptions used to be a difficult, manual process. Re-
cent work has proposed an off-the-shelf learning algorithm, L*, to derive appropriate
assumptions automatically [12].

The L* learning algorithm. L* was developed by Angluin [4] and later improved by
Rivest and Schapire [24]. L* learns an unknown regular language U over alphabet >
and produces a deterministic finite state automaton (DFA) that accepts it. L* interacts
with a Minimally Adequate Teacher that answers two types of questions from L*. The
first type is a membership query asking whether a string s € 2™ is in U. For the second
type, the learning algorithm generates a conjecture A and asks whether £(A) = U. If
L(A) # U the Teacher returns a counterexample, which is a string s in the symmetric
difference of £L(A) and U. L* is guaranteed to terminate with a minimal automaton A
for U. If A has n states, L* makes at most n — 1 incorrect conjectures. The number
of membership queries made by L* is O(kn? + nlogm), where k is the size of X, n
is the number of states in the minimal DFA for U, and m is the length of the longest
counterexample returned when a conjecture is made.

296 M. Gheorghiu, D. Giannakopoulou, and C.S. Pasédreanu
3 Assume-Guarantee Reasoning and Small Interface Alphabets

We illustrate the benefits of smaller interface alphabets for assume guarantee reason-
ing through the client-server example of Sec. 2l To check the property in a compo-
sitional way, assume that we break up the system into: M; = Client; || Client,
and My = Server. The complete alphabet of the interface between M; || P and
My (see Fig. 2l (Ieft)) is: {client;.cancel, client;.grant, client;.deny, client,.request,
clienty.cancel, client,.grant, client,.deny, client,.request}.

Using this alphabet and the learning method of [12] yields an assumption with 8
states (see [[14]). However, a (much) smaller assumption is sufficient for proving the mu-
tual exclusion property (see Fig.[2l (right)). The assumption alphabet is {client,.cancel,
client, .grant, clienty.cancel, client,.grant}, which is a strict subset of the complete in-
terface alphabet (and is, in fact, the alphabet of the property). This assumption has just 3
states, and enables more efficient verification than the 8-state assumption obtained with
the complete alphabet. In the following sections, we present techniques to infer smaller
interface alphabets (and the corresponding assumptions) automatically.

4 Learning for Assume-Guarantee Reasoning

We briefly present here the assume-guarantee framework from [12]]. The framework
uses L* to infer assumptions for compositional verification. A central notion of the
framework is that of the weakest assumption [15], defined formally here.

Definition 1 (Weakest Assumption for X). Let My be an LTS for a component, P be
a safety LTS for a property required of My, and Y. be the interface of the component
to the environment. The weakest assumption A, s, of My for X and for property P is
a deterministic LTS such that: 1) oAy, > = X, and 2) for any component My, M ||
(MQlE) ': P lﬁcM2): Aw,E

The notion of a weakest assumption depends on the interface between the component
and its environment. Accordingly, projection of Ms to X forces M> to communicate
with our module only through ' (second condition above). In [15] we showed that the
weakest assumptions exist for components expressed as LTSs and safety properties and
provided an algorithm for computing these assumptions.

The definition above refers to any environment component My that interacts with
component M via an alphabet . When M5 is given, there is a natural notion of the
complete interface between M; and its environment My, when property P is checked.

Definition 2 (Interface Alphabet). Let My and Mo be component LTSs, and P be a
safety LTS. The interface alphabet X1 of M is defined as: X1 = (aM; U aP) N aMos.

Definition 3 (Weakest Assumption). Given M, Ms and P as above, the weakest
assumption A, is defined as A, 5, .

Note that, to deal with any system-level property, we allow properties in definition
to include actions that are not in oM but are in aM5. These actions need to be in the

Refining Interface Alphabets for Compositional Verification 297

Inputs: M1, Mo, P, ¥

Teacher

true
query: string s (sy M7 (P)

false
remove counterex

false
conjecture: A

Oracle 1: (A)YMq (P)

true

L* Oracle 2. true Output: M1 || Mg |= P
racle 2: (true) M (A) (assumption A)
counterex t | false
Counterexample
Analysis
LTSA: (t] ;) M1 (P)

add counterex tly | true false Output: M || Mo [= P

(counterex ¢)

Fig. 3. Learning framework

interface since they are controllable by Ms. Moreover from the above definitions, it
follows that M || Ms | Piff My = Ay.

Learning framework. The original learning framework from [12]] is illustrated in
Fig. Bl The framework checks M; || My = P by checking the two premises of the
assume-guarantee rule separately, and using the conjectures A from L* as assumptions.
The alphabet given to the learner is fixed to X' = X;. The automaton A output by L*
is, in the worst case, the weakest assumption A,.

The Teacher is implemented using model checking. For membership queries on
string s, the Teacher uses LTSA to check (s)M;(P). If true, then s € L(Ay), so
the Teacher returns true. Otherwise, the answer to the query is false. The conjectures
returned by L* are intermediate assumptions A. The Teacher implements two oracles:
Oracle 1 guides L* towards a conjecture that makes (A) M (P) true. Once this is ac-
complished, Oracle 2 is invoked to discharge A on My. If this is true, then the assume
guarantee rule guarantees that P holds on M || Ms. The Teacher then returns true and
the computed assumption A. Note that A is not necessarily A,,, it can be stronger than
Ay, Le., L(A) C L(A,), but the computed assumption is good enough to prove that
the property holds or is violated. If model checking returns a counterexample, further
analysis is needed to determine if P is indeed violated in M; || M or if A is imprecise
due to learning, in which case A needs to be modified.

Counterexample analysis. Trace ¢ is the counterexample from Oracle 2 obtained by
model checking (true) M3 (A). To determine if ¢ is a real counterexample, i.e., if it leads
to error in M, || My || P.,., the Teacher analyzes ¢t on My || P, In doing so, the
Teacher needs to first project ¢ onto the assumption alphabet X, that is the interface
of My to My || P, Then the Teacher uses LTSA to check (t|s)M;(P). If the er-
ror state is not reached during the model checking, ¢ is not a real counterexample, and
t] s is returned to the learner L* to modify its conjecture. If the error state is reached,
the model checker returns a counterexample c that witnesses the violation of P on M
in the context of ¢ | 5. With the assumption alphabet ' = X', cis guaranteed to be a real

298 M. Gheorghiu, D. Giannakopoulou, and C.S. Pasédreanu

error trace on My || My || P.. [12Z]. However, as we shall see in the next section, if
X C XYy, cis not necessarily a real counterexample and further analysis is needed.

5 Learning with Alphabet Refinement

Let M; and M» be components, P be a property, X7 be the interface alphabet, and X/
be an alphabet such that) C X';. Assume that we use the learning framework of the
previous section, but we now set this smaller 3 to be the alphabet of the assumption
that the framework learns. From the correctness of the assume-guarantee rule, if the
framework reports true, M; || My = P. When it reports false, it is because it finds a
trace t in M, that falsifies (¢] 5;) M7 (P). This, however, does not necessarily mean that
My || M2 = P. Real violations are discovered by our original framework only when
the alphabet is X7, and are traces ¢’ of M, that falsify ('] 5,) My (P).

Consider again the client-server example. Assume X = {client;.cancel, client;.grant,
clienty.grant}, which is smaller than X'; = {client,.cancel, client;.grant, client;.deny,
client;.request, client;.cancel, client,.grant, client.deny, client;.request}. Learning
with X produces trace: ¢ = (client,.request, client,.grant, client,.cancel, client; .request,
client;.grant). Projected to X/, this becomes ¢| >= (client,.grant, client;.grant). In the
context of t| 5>, My = Clients violates the property since Client; || Client, || P, con-
tains the following behavior (see Fig. 2)):

client; .request client,.request clientp.grant client; .grant

(0,0,0) " — " (1,0,0) T— " (1,1,0) =" (1,2,2) — (2,2,error).

Learning therefore reports false. This behavior is not feasible, however, in the context
of t|x,= (clienty.request, client,.grant, client,.cancel, client;.request, client;.grant).
This trace requires a client,.cancel to occur before the client;.grant. Thus, in the con-
text of X7 the above violating behavior would be infeasible. We conclude that when
applying the learning framework with alphabets smaller than X, if true is reported
then the property holds in the system, but violations reported may be spurious.

5.1 Algorithm

We propose a technique called alphabet refinement, which extends the learning frame-
work from [[12]] to deal with smaller alphabets than 3'; while avoiding spurious coun-
terexamples. The steps of the algorithm are as follows (see Fig. 4l (a)):

1. Inmitialize X to a set S such that S C X;.

2. Use the classic learning framework for Y. If the framework returns true, then report
true and go to step 4 (END). If the framework returns false with counterexamples
c and t, go to the next step.

3. Perform extended counterexample analysis for c. If c is a real counterexample,
then report false and go to step 4 (END). If c is spurious, then refine Y, which
consists of adding to ' actions from X';. Go to step 2.

4. END of algorithm.

" In the assume guarantee triples: ¢| s;, t'| =, are trace LTSs with alphabets X, Xt respectively.

Refining Interface Alphabets for Compositional Verification 299

counterex counterex
c t

i i Extended Counterex
Analysis
[Outpl.lt: M1||M2 '= P
. . fals
Learning ‘LTSA~ (tlz) M1 (P) ‘—igereal error
Framewor Extended , Output: ¢ true
Countere:
counterex ~° - M || M2 = P
candt nalysis Refiner: compare
ﬁ tlz;,cls;
update X; restart different update X
agtions pocar

(a) (b)
Fig. 4. Learning with alphabet refinement (a) and additional counterexample analysis (b)

When spurious counterexamples are detected, the refiner extends the alphabet with
actions in the alphabet of the weakest assumption and the learning of assumptions is
restarted. In the worst case, X7 is reached, and as proved in our previous work, learning
then only reports real counterexamples. In the above high-level algorithm, the high-
lighted steps are further specified in the following.

Alphabet initialization. The correctness of our algorithm is insensitive to the initial
alphabet. We implement two options: 1) we set the initial alphabet to the empty set to
allow the algorithm to only take into account actions that it discovers, and 2) we set the
initial alphabet to those actions in the alphabet of the property that are also in X'.i.e.,
aP N X7 (in the experiments from Sec. [/lwe used the second option). The intuition for
the latter option is that these interface actions are likely to be significant in proving the
property, since they are involved in its definition. A good initial guess of the alphabet
may achieve big savings in terms of time since it results in fewer refinement iterations.

Extended counterexample analysis. An additional counterexample analysis is ap-
pended to the original learning framework as illustrated in Fig. B(a). The steps of this
analysis are shown in Fig. B(b). The extension takes as inputs both the counterexample
t returned by Oracle 2, and the counterexample c that is returned by the original coun-
terexample analysis. We modified the “classic” learning framework (Fig. 3 to return
both c and ¢ to be used in alphabet refinement (as explained below). As discussed, c is
obtained because (¢| 5;) M1 (P) does not hold. The next step is to check whether in fact
t uncovers a real violation in the system. As illustrated by the client-server example,
the results of checking M; || P, in the context of ¢ projected to different alphabets
may be different. The correct (non-spurious) results are obtained by projecting ¢ on the
alphabet X'; of the weakest assumption. Counterexample analysis therefore calls LTSA
to check (t| x,)M;(P). If LTSA finds an error, the resulting counterexample ¢ is real.
If error is not reached, then the counterexample is spurious and the alphabet X' needs to
be refined. Refinement proceeds as described next.

Alphabet refinement.